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1 What Is PT-AI?

The theory and philosophy of artificial intelligence has come to a crucial point where
the agenda for the forthcoming years is in the air. This volume presents the papers
from a conference on the “Philosophy and Theory of Artificial Intelligence” that
was held in October 2011 in Thessaloniki (www.pt-ai.org).

Artificial Intelligence is perhaps unique among engineering subjects in that it has
raised very basic questions about the nature of computing, perception, reasoning,
learning, language, action, interaction, consciousness, humankind, life etc. etc. –
and at the same time it has contributed substantially to answering these questions (in
fact, it is sometimes seen as a form of empirical research). There is thus a substantial
tradition of work, both on AI by philosophers and of theory within AI itself.

The classical theoretical debates have centred on the issues whether AI is possible
at all (often put as “Can machines think?”) or whether it can solve certain problems
(“Can a machine do x?”). In the meantime, technical AI systems have progressed
massively and are now present in many aspects of our environment. Despite this
development, there is a sense that classical AI is inherently limited, and must be re-
placed by (or supplanted with) other methods, especially neural networks, embodied
cognitive science, statistical methods, universal algorithms, emergence, behavioural
robotics, interactive systems, dynamical systems, living and evolution, insights from
biology & neuroscience, hybrid neuro-computational systems, etc. etc.

2 After Classical Artificial Intelligence?

We are now at a point where we can see more clearly what the alternatives are.
The classical ‘computationalist’ view was that cognition is computation over rep-
resentations, which may thus take place in any computational system, natural or
artificial. On this classical view, AI and Cognitive Science are two sides of the same
coin – this view had fuelled a large part of the philosophical and theoretical interest
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in AI. However, most of the defining features of this old consensus are now under
threat: computation is digital; representation is crucial for cognition; embodiment,
action and interaction are not; the distinction between living and non-living agents
is irrelevant; etc. So, should we drop the classical view, should we supplement it,
or should we defend it in the face of modish criticism? These philosophical debates
are mirrored in technical AI research, which has been moving on (for the most part),
regardless of the ‘worries’ from the theorists; but some sections have changed un-
der the impression of classical criticism while new developments try to shed the
classical baggage entirely. In any case, the continued technical success has left an
impression: We are now much more likely to discuss human-level AI (whatever that
means) in machines as a real possibility.

Given where we stand now, the relation between AI and Cognitive Science needs
to be re-negotiated – on a larger scale this means that the relation between technical
products and humans is re-negotiated. How we view the prospects of AI depends on
how we view ourselves and how we view the technical products we make; this is also
the reason why the theory and philosophy of AI needs to consider such apparently
widely divergent issues from human cognition and life to technical functioning.

3 What Now?

A bewildering mass of questions spring to mind: Should we repair classical AI,
since intelligence is still input-output information processing? Drop the pretence
of general intelligence and continue on the successes of technical AI? Embrace
embodiment, enactivism or the extended mind? Revive neural networks in a new
form? Replace AI by ‘cognitive systems’? Look for alternative systems, dynamic,
brain-inspired, . . . ? And what about the classical problems that Dreyfus, Searle,
Haugeland or Dennett had worked on; what about meaning, intention, conscious-
ness, expertise, free will, agency, etc.? Perhaps AI was blind in limiting itself to
human-level intelligence, so why not go beyond? What would that mean and what
would its ethical implications be? What are the ethical problems of AI even now
and in the foreseeable future?

The discussion on the future of AI seems to open three different directions. The
first is AI that continues, based on technical and formal successes, while re-claiming
the original dream of a universal intelligence (sometimes under the heading of ‘arti-
ficial general intelligence’). This direction is connected to the now acceptable notion
of the ‘singular’ event of machines surpassing human intelligence.

The second direction is defined by its rejection of the classical image, especially
its rejection of representation (as in Brooks’ ‘new AI’), its stress of embodiment
of agents and on the ‘emergence’ of properties, especially due to the interaction of
agents with their environment.

A third direction is to take on new developments elsewhere. One approach is to
start with neuroscience; this typically focuses on dynamical systems and tries to
model more fundamental processes in the cognitive system than classical cognitive
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science did. Other approaches of more general ‘systems’ subvert the notion of the
‘agent’ and locate intelligence in wider systems.

Finally, there are many approaches that try to combine the virtues of the various
approaches towards practical results, especially systems that are more autonomous
and robust in real-world environments. These approaches are often pushed by fund-
ing agencies; the National Science Foundation (USA) supports ‘Cybertechnical
Systems’ while the European Commission sponsors ‘Artificial Cognitive Systems’.
(I happen to coordinate “EUCog”, a large network of researchers in this context.)

4 Reclaiming AI: Back to Basics

The basic problems of AI remain and ignoring them ‘because our systems are get-
ting better anyway’ is a risky strategy. The way to move forward in this context
seems to go back to basics . . . and of course, philosophers are likely to do this in
any case. There are a few basic notions that are fundamental for the decisions in this
debate and also, the basic problems have significant backward relevance for philos-
ophy (if we can say something about free will in machines, for example, this has
direct repercussions on how we see free will in humans).

Unsurprisingly, the basic issues are computation & methods, cognition and ethics
& society – and this is what the papers in this volume address.

The papers published here have passed two high hurdles: they have been blind
peer reviewed as long abstracts and those who passed were reviewed a second time
as full papers. A list of the distinguished members of the program committee can be
found on our website.

Further work on these issues is to be found in the companion volume to this
book, which has appeared as special volume 22/2 (2012) of the journal Minds and
Machines. We expect to hold further events and other activities in this field – watch
pt-ai.org!
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Machine Mentality? 

Istvan S.N. Berkeley and Claiborne Rice* 

Abstract. A common dogma of cognitive science is that cognition and computa-
tion are importantly related to one another. Indeed, this association has a long his-
tory, connected to older uses of the term 'computer'. This paper begins with a brief 
examination of the history of the association between computers and putatively 
thinking machines. However, one important place where the modern sense of this 
association is made explicit is in Turing's (1950) paper “Computing Machinery 
and Intelligence”. The proposals that Turing makes in this paper have been the 
subject of considerable debate. Here, the details of Turing's claims will be ex-
amined closely and it will be argued that two importantly distinct claims need to 
be discerned, in order to make good sense of some of Turing's remarks. The first 
claim, which may be construed as an ontological one, relates to whether or not the 
class of entities that 'think' includes computational devices. The second claim, 
which is more of a semantic one, relates to whether or not we can meaningfully 
and coherently assert sentences concerning 'thinking' about computational devices. 
It is the second of these claims which will be the main focus of most of the rest of 
the paper. In particular, four methods will be employed to determine whether Tur-
ing's prediction about this issue has come true. The methods examined are an in-
tuitive one, a web based one and two corpus linguistic approaches, one using the 
Google Books corpus, the other using the Corpus of Contemporary American 
English. Attention is then briefly turned to the ontological claim and two objec-
tions to it are examined. It will finally be argued that, while it is okay to talk of 
computers 'thinking' and to attribute some mental properties and predicates to 
them in certain cases, the membership of computers in the class of 'thinking 
things' must remain just an intriguing possibility. 

Keywords: Turing, Computational Thought, Corpus Linguistics.  
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1   Introduction 

It is a common dogma amongst cognitive scientists that, in some significant sense, 
there is an important link between cognition and computation. This is an idea with 
a long, varied and venerable history (Boden 2006). However, it is to some degree 
a controversial thesis. On the one hand, authors such Dennett (1987) and  
McCarthy (1979), find the idea unproblematic, if handled judiciously.  On the 
other hand, authors such as Searle (1980) and Dreyfus (1992) find the very idea an 
anathema. This disagreement alone should be sufficient to stimulate philosophical 
interest. A careful study of one set of claims about the relation between cognition 
and computation, those famously advocated by Turing (1950), will be the primary 
focus of the discussion here.  However, before examining Turing's position, a brief 
discussion of the association between computers and cognitive activity is in order. 

2   Historical Background 

Haugeland (1989, p. 23) claims that Hobbes is the grandfather of modern Artifi-
cial Intelligence, due to the connection he made between reasoning and computa-
tion, or 'reckoning' in his Leviathan. In all fairness, what Hobbes had in mind was 
an individual who undertook calculations, or computations. Furthermore, this was 
a notion that had been around for some time. For instance, in 1267 Roger Bacon 
makes reference to errors in lunar phase cycle calculations that were known by 
'computers'  in his Opus Majus (see Burke 1928, p. 296). 

According to the Oxford English Dictionary, the modern notion of a computer, 
as a mathematical and information processing device, did not arise until 1945, 
when the term was used in this way by von Neumann in his draft report on the 
EDVAC machine. However, even prior to this people were making explicit asso-
ciations between computational devices and mentations. For instance, Lady Byron 
reported in a diary entry made in mid-June 1833 that she had been to Charles 
Babbage's house to see “...the thinking machine...”, the machine in question being 
a scale model of Babbage's Difference Engine (Stein 1985, p. 42). Thus, when 
Turing (1950) gave some serious consideration, in a philosophical context, to the 
relationship between computers and intelligence, he was continuing an established 
tradition. 

3   Turing (1950) 

In his paper “Computer Machinery and Intelligence”, Turing (1950) began by 
considering the question, 'Can machines think?” However, he rejected the ques-
tion on the grounds that it was too meaningless to warrant discussion. Instead, 
later in the paper he (1950, p. 442) offered the following prediction, 

… I believe that at the end of the century the use of words and general educated 
opinion will have altered so much that one will be able to speak of machines thinking 
without expecting to be contradicted. 
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As we have now passed the end of the twentieth century, we should be in a posi-
tion to determine whether this prediction was correct. However, before addressing 
this matter directly, it is necessary to raise an apparent tension which arises from 
some of Turing's other remarks, earlier in the paper. At the very beginning of the 
paper, where Turing introduces his question about thinking machines he (1950,  
p. 433) notes, 

If the meaning of the words 'machine' and 'think' are to be found by examining how 
they are commonly used it is difficult to escape the conclusion that the meaning and 
the answer to the question, 'Can machines think?' is to be sought in a statistical 
survey such as a Gallup poll. But this is absurd. 

However, on the face of it, it would appear that the prediction quoted above ap-
pears to endorse exactly this view. 

James (1910, p. 44) famously advocated “...whenever you meet a contradiction 
you must make a distinction,...” This strategy can be usefully deployed here. The 
tension between Turing's remarks can easily be resolved by carefully distinguish-
ing between the answers to two importantly distinct, though related questions: 

1. The Ontological Question: Does the class of entities that 'think' include 
computational devices? 

2. The Semantic Question: Can we meaningfully assert sentences concerning 
'thinking' about computational devices? 

If we construe Turing's remarks about educated opinion at the end of the century 
as addressing a means of answering the semantic question and his remarks con-
cerning Gallop polls as addressing a means of answering the ontological question, 
then the apparent tension between his remarks can be resolved.  

For present purposes, an attempt at answering the ontological question will be 
put to one side. This is because it is the answer to the second question which is the 
subject of Turing's prediction. However, before proceeding further, some clarifica-
tion of the issues at hand are in order. The first point of clarification is to explicitly 
restrict the scope of the term 'machine' to just computational devices. Although 
this class of entities is not entirely unproblematic and does not have precise boun-
daries (See Hayes et al. 1997 for a discussion of these points), nonetheless, we 
have many examples which are clear cases of computers in the standard sense of 
the term. The second point of clarification is to note that it is worth broadening the 
scope of inquiry from the mere 'thinking' that Turing was concerned about, to the 
attribution of mental properties or predicates in general to this class of devices. 
With these two points of clarification in hand, we can refine the thesis under con-
sideration to amounting to attempting to answer the question,  

Can we reasonably attribute mental properties or predicates to computational 
devices? 
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4   Testing Turing's Prediction 

4.1   An Intuition Based Strategy 

It may be helpful to consider some examples of the kinds of sentences that might 
plausibly be used to attribute mental states to computers. Consider the following, 

The computer thinks that you are not registered in the class. 
The computer wants some input. 
A computer running a French skin disease diagnosis program believed that 
Doug Lenat's 1980 Chevy had measles. 
The computer knows that there are still some outstanding debits.  

The first sentence might be uttered in the context of a faculty member helping a 
student with a registration problem. The second sentence might be uttered by a 
technical support worker helping someone troubleshoot a computer problem. The 
third sentence might be uttered by someone describing a scene in the PBS televi-
sion program The Machine That Changed The World, as the program contains just 
such a scene. The final sentence might be spoken by a bank employee helping a 
customer with a banking problem. The point here, though, is that, broadly speak-
ing, each of these sentences seem quite normal and not too strange. So, they each 
provide some intuitive support for Turing's prediction about word usage at the end 
of the twentieth century, as each sentence involves applying a mental predicate to 
a computational device.  

At first blush, it might appear that the consideration of these sentences might 
serve to support the conclusion that Turing's prediction has come true, to some 
degree at least. Unfortunately, things are not quite so simple. The key here is to 
realize that the assessment of the appropriateness of each of these sentences relies 
entirely upon our intuitions, and intuitions are notoriously unreliable (see also 
Hales 2000). Our intuitions all too easily can become theory-laden and different 
people can have different intuitions. Although we may find the sentences above 
unproblematic, not everyone would find them so. For instance, Horn (1998) citing 
Turing's (1950) prediction, says that Turing should expect to be contradicted about 
the word usage he suggested. A final problem that arises with intuition based ap-
proaches comes from the fact that intuitions can also change over time. Thus,  
intuitions about the sentences above do little to provide evidence in favor of the 
success of Turing's prediction. Clearly some more trustworthy method is need.  

One way to determine whether or not it is reasonable to attribute mental proper-
ties or predicates to computational devices is to examine people’s linguistic prac-
tices. One intuitive, though admittedly rough and ready, method of assessing  
linguistic practices is to search the World Wide Web. 

4.2   A Search Engine Based Strategy  

Searching the web is an everyday method of finding things out, in this day and 
age. Indeed, the transitive verb 'to google' was added to the OED in 2006.  So, an 
intuitively plausible strategy, albeit a 'quick and dirty' one, to determine whether 
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people actually attribute mental predicates to computers, would be to search the 
web and see what people are saying.  

To explore this possibility, searches were undertaken for bigrams composed of 
the word ‘computer(s)’ preceding the words 'think(s)', 'believes(s)', or 'know(s)'. 
According to the web metrics site StatCounter (http://www.statcounter.com), the 
three most commonly used search engines between October 2010 and 2011 were 
Google with 90.67% of searches, Yahoo with 3.77% of searches and Bing with 
3.70% of searches. Due to its superior handling of variations and alternations, 
Google was selected to handle web searches. Each search used the Advanced Search 
options to limit the searches to pages Google thinks are written in English. To con-
textualize the results, searches were also done using the word ‘dog’, which is the 
most frequently used animal term in American English (Davies 2010, p. 9) and is 
fairly close to ‘computer’ in its overall frequency within the language (the noun 
‘computer’ being the 586th most frequent word and the noun ‘dog’ being the 770th, 
[Davies 2010]). All searches were also done in both Firefox and Internet Explorer, 
with identical results in each. The results of this exercise are displayed in Table 1.  
 

 

Table 1 Number of 'hits' obtained by searching for certain phrases, using Google 
 

Search Phrase Hits 

"computer thinks" 472,000 

“computers think” 424,000 

“dog thinks” 1,340,000 

“computer believes” 24,100 

“computers believe” 13,900 

“dog believes” 122,000 

"computer knows" 538,000 

"computers know" 170,000 

“dog knows” 1,050,000 
 

 
On the face of it, these results appear to suggest that people do apply mental 

predicates to computers with some frequency. Unfortunately, these results cannot 
be taken at face value because this simple methodology is deeply defective.  

Although we may be accustomed to using search engines on a daily basis, they 
are entirely unsuitable for use in an exercise such as the one just undertaken for a 
number of reasons. Several characteristics of the World Wide Web when it is 
viewed as a storehouse of language data affect the outcome of searches. The web 
crawlers used by search engines cannot access the entire content of the web. Also, 
the exact size of the corpus that the web represents is difficult to determine and 
constantly changing. An even greater limitation comes from the fact that the pre-
cise search algorithms used by the search engines are not only unknown, they are 
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also carefully guarded commercial secrets. It is also the case that this method has 
no means of guarding against detecting repetitions. This is especially problematic, 
as it is a common practice for some users of web based forums to quote posts that 
they are replying to. Another objection to this methodology comes from the fact 
that the results produced by a particular web search can vary, dependent upon the 
location of the computer used to conduct the search, and as a function of other 
recent searches undertaken from the particular machine. For a detailed discussion 
of these issues, see Hundt, Nesselhauf and Biewer (2007). A final objection comes 
from the fact that the results produced by a search engine vary over time.  

On the face of it, it might appear to be both obvious and irrelevant that the 
numbers of hits found by a search engine would change over time.  After all, new 
content appears on the Web everyday, and old content is sometimes removed 
However, such an insight would be misleading. Consider the phrase “The comput-
er knows that”. In April 2011, Google reported 237,000 hits for the phrase. How-
ever, in October the same year, Google reported just 183,000 hits. Yet, by the end 
of November 2011, Google was reporting 372,000 hits. In each case, the searches 
were done with identical settings, from the same computer, in the same location. 
This, in addition to the other considerations mentioned above serves to show that a 
search engine based strategy, although easy and intuitive, is not really a suitably 
robust method for determining whether people attribute mental predicates to  
computers.  

Fortunately, there are ways to contextualize the Google results to make them 
more useful. One of these is to use the WebCorp Live search engine, created for 
linguists to use for filtering search engine output (Renouf 2003). Webcorp uses the 
search engine’s API to retrieve results, then visits each returned page to collect the 
target phrase with its context, filtering out trash pages and dictionary pages. The 
user can control how many results are returned from each page found, the size of 
context displayed for each token, and other variables. Results can also be sorted 
by context to make reviewing results easier.  

The Google searches above were replicated in WebCorp, with a limit set at 50 
results each, one result for each web page identified  The results were examined 
by hand to see what percentage would be considered positive examples of the  
predication in question.  

 

 
Table 2 Positive Examples for Target Predications in WebCorp 

 

Search Bigram Positive Examples (from 50) Positive Examples (%) 
“computer thinks” 47 94% 
“computers think” 12 24% 
“dog thinks” 48 96% 
“computer believes” 33 66% 
“computers believe” 12 24% 
“dog believes” 29 58% 
“computer knows” 43 86% 
“computers know” 20 40% 
“dog knows” 36 72% 
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For example, the search on the exact phrase “computers think” in Webcorp 
yielded 49 tokens of the phrase and one false hit. Of the 49 listed tokens, 23 were 
of the question, “can computers think?”, with 6 more also in similar contexts 
(“'Anti-laser' could make future computers think much faster”); 6 others were 
ruled out by punctuation (“Waste in Computers? ‘Think Green’”), and two exam-
ples had the word ‘think’ placed in quotation marks (“How Do Digital Computers 
“Think”?”). Only 12 tokens could be considered legitimate assertions of the predi-
cation (“Thumbs Up If Slow Computers Think This Is Pixelated”).  

Searching the singular construction in WebCorp was much more fruitful. Out 
of the 48 accessible hits, only one would be considered false because ‘think’ was 
in quotation marks. The other 47 were legitimate examples of the predication. 
Interestingly, 36 of those were clearly discussions of computer functionality, many 
occurring on technical discussion boards at sites like ubuntuforums.org: 
“[SOLVED] Computer thinks game controller is mouse?” or askdavetaylor.com: 
“… the computer thinks i have two Windows XP's installed.” On this evidence, it 
seems people are more likely to predicate thinking of individual computers rather 
than of the class of things usually called ‘computers’. 

The results for ‘knows’ and ‘believes’ were similar, the singular subjects yield-
ing more legitimate hits than the plural constructions. Because the Webcorp re-
sults are randomly selected from all of the pages that Google returns, the percen-
tages of legitimate hits can then be taken from the raw Google searches to estimate 
how many of the results from those searches are legitimate examples. Taking the 
singular constructions as more reliable than the plural, Table 3 displays for each 
singular construction the corrected estimate of legitimate occurrences turned up by 
Google. 

 
Table 3 Estimated Occurrences of Legitimate Target Predications from Google 

 

Search Bigram Raw Hits Corrected Estimate 
“computer thinks” 472,000 443,680 
“dog thinks” 1,340,000 1,286,400 
“computer believes” 24,100 15,906 
“dog believes” 122,000 70,760 
“computer knows” 538,000 462,680 
“dog knows” 1,050,000 756,000 

 

 
‘Thinks’ and ‘knows’ are predicated of computers only somewhat less fre-

quently than they are of dogs, with enough examples represented to conclude that, 
in general, English speakers are not loathe to speak of their computer as thinking 
or knowing. 

5   Corpus Linguistics 

Corpus linguistics, as a linguistic methodology,  fell out of favor in the mid and 
late Twentieth Century. In recent years though, there has been a resurgence in 
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interest in the approach. Corpus linguistics is an empirical approach to language 
that McEnery and Wilson (1996, p. 5) suggest can be used “…to determine 
whether sentence x is a valid sentence of language y by looking in a corpus of the 
language in question and gathering evidence for the grammaticality, or otherwise, 
of the sentence.” This being the case, it presents an ideal set of tools for also de-
termining whether particular linguistic usages appear in natural language. In the 
current context, the tools of corpus linguistics can be used, or adapted, to see, in a 
more methodologically rigorous way than the strategies discussed above, whether 
or not speakers of English attribute mental predicates to computational devices.  

The first issue that needs to be addressed when undertaking a corpus based 
study of language use is the selection of corpora to investigate. There are many 
corpora that are available, but not all are suitable in the current context. For in-
stance, it is reasonable to limit the corpora of interest to those which are in Eng-
lish, and largely historical corpora will be of little interest. So, a reasonable limita-
tion on corpora selection is that the material contained in it should be collected 
after 1950, when Turing made his prediction. Finally, for pragmatic reasons, only 
corpora with a publicly accessible web interface were considered. 

5.1   Stable Corpora 

5.1.1   Google Books 

The first corpus to be examined is derived from the Google Books Project. This is 
a major project that has as a goal the digitization of a very large number of books 
found in various libraries around the world. There are some limitations on the ma-
terial that is digitized, due to both time constraints and copyright issues, but the 
project in on-going (see Google 2011 for a brief history of this project). In 2009 
Google made available a complete selection of all 1- though 5-grams from the 
Google Books Project. Mark Davies has begun to integrate the American English 
subset of this corpus into his website at Brigham Young University, where it can 
be accessed though the web. Though Google makes their ngram corpus available 
for searching at http://books.google.com/ngrams, the BYU interface is superior for 
linguistic purposes because it provides useful details that the Google Ngram view-
er does not, such as the specific number of results per century. Thus, although the 
project is multi-lingual, only the American English part of the corpus was consi-
dered. One reason this is an appropriate corpus to use is that Turing's (1950) pre-
diction was based upon “...general educated opinion...” It is a reasonable assump-
tion that the content of books is to some extent representative of this type of  
opinion.  

The method adopted here was to search for bigrams in the corpus, with the 
dates on the corpus adjusted to only include books published between 1950 and 
2009 (the most recent date available with the corpus). The corpus was searched  
for the previously described bigrams, limited to the singular examples. Ngram  
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searches that are used in exercises like this need to be done with some care. The 
types of controls proposed by Michel, Shen, et al. (2010) were adopted. The re-
sults of the Ngram searches are displayed in Table 4 as raw hits.1 

 
Table 4 The results of bigram searches conducted on the American English Google Books 
corpus between the years 1950 and 2008. 

 

Ngram Hits 

“computer thinks” 589 

“dog thinks” 639 

“computer knows” 1924 

“dog knows” 2587 

“computer believes” 53 

“dog believes” 181 
 

 
The results of this exercise appears to show that the practice of attributing men-

tal predicates to computers is reasonably common. One advantage of this corpus is 
that the compilers included punctuation within the corpus, so that the search will 
not retrieve the kinds of syntactic errors seen with the raw Google results above.  
What is perhaps of interest is that the writers included in the Google Books corpus 
are considerably more likely to use locutions that describe computers as 'knowing' 
than any of the other targeted terms. 

Although the results here appear to be both interesting and, perhaps, compel-
ling, there are still methodological deficiencies with this strategy. Though focus-
ing on the finite inflected form filters out false positive forms such as yes/no ques-
tions formed with modals, it does not control for context, such as philosophical 
discussions in which the Turing test itself is mentioned. So, in order for these re-
sults to be truly compelling, it would be necessary to inspect each putative hit and 
determine whether or not it amounted to a genuine case of mental state attribution. 
Unfortunately, the large number of hits makes such a quality control process too 
time consuming to be feasible. Fortunately, Davies has constructed another corpus 
with an efficient web interface.  

5.1.2   COCA  

The Corpus of Contemporary American English (COCA) currently consists of 425 
million words of text, collected from sources such as spoken language, fiction, 
popular magazines, newspapers, and academic texts, between 1990 and 2011 (Da-
vies 2011). One of the advantages of COCA is that it can display the context in 

                                                           
1 The total word counts for the American English section of the Google Ngram corpus were 

retrieved from Google Books directly. The total words between 1950 and 2009, inclusive, 
are 97,906,666,338, or about 98 billion. 
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which matched word patterns appear. This makes it possible to determine whether 
any false positives are present. As this corpus produces fewer hits than the Google 
Books corpus, it also makes this a feasible project. 

The COCA corpus was searched for the word strings that were examined in the 
previous section. Each string was then examined to determine whether or not it 
was a false positive. The results from doing this are displayed in Table 5.  

 

 
Table 5 The results of bigram searches conducted on the COCA corpus, with false posi-
tives subtracted. 

 

Ngram Hits per million words 

“computer thinks” 6 0.014 

“dog thinks” 7 0.016 

“computer knows” 9 0.021 

“dog knows” 24 0.056 

“computer believes” 0 0 

“dog believes” 0 0 
 

 
Considering the vast difference is sizes between the two stable corpora, the re-

sults from the two are somewhat congruent. “Computer thinks” occurs about 
0.014 times per million words in COCA, and about half that frequently in Google 
Books (0.006 per million words). This is likely due to COCA being confined to 
the most recent two decades, while the searches on Google Books covered a 60 
year period. Nonetheless, there are still some interesting conclusions that can be 
drawn from them.  

5.2   Discussion 

The results from the Google Books corpus and the COCA corpus both support the 
broad conclusion that people do speak 'as if' computers have mental states, some-
times, at least. There are, though, some more specific, albeit tentative, further con-
clusions that can be drawn also. 

From both corpora, it appears that saying that computers 'know' things is the 
more common type of mental state attribution. The incidence of false positives is 
much lower with the stable corpora than it is with the Web. The comparison with 
‘dogs’ is suggestive. In the stable corpora, dogs and computers are said to ‘think’ 
at close to the same rates, while dogs are said to ‘know’ things about one-third 
again as often. The ontological issues presented by the putative mentation of both 
dogs and computers are not entirely similar, but the willingness of people to use 
verbs of mentation about both entities suggests that the categories which sanction 
predication are more flexible than we might like to admit.  



Machine Mentality? 11
 

The results with ‘believe’ should be cautionary. COCA is quite a large corpus, 
balanced to include high, middle, and low registers of speech and writing, yet it 
contains no examples of people asserting that computers or dogs ‘believe’. When 
the corpus is large enough, as with Google Books and the Web, examples begin to 
emerge, but given the nature of speech (and text encoding and OCR processing), 
we should expect to see a handful of examples of almost anything  However, even 
if these factors are taken into account, there is still some quite compelling evi-
dence that people find it unobjectionable to speak as if they attribute states of 
knowledge to computational systems.  

A final point to note is that seeking convergent evidence is a central element of 
the disciplines of both corpus linguistics and cognitive science (McEnery 1996; 
Lakoff 1987). The methods described here for assessing the correctness of Tur-
ing's predictions all demonstrate a 'theoretical drift' in a certain direction.  Appeal-
ing to intuitions, basic web searches, looking for bigrams in the Google Books and 
the COCA corpora, as methodologies, despite their individual limitations, all seem 
to support the broad contention that sometimes at least, people unproblematically 
attribute mental properties, or predicates to computational devices.  

6   Ontology and Objections 

Most of the evidence discussed above has focused upon determining the answer to 
what was earlier called the 'Semantic Question'. The semantic question was “Can 
we meaningfully assert sentences concerning 'thinking' about computational de-
vices?” The evidence suggests that this question can be given an affirmative an-
swer, albeit with some limitations. However, this still leaves what was termed the 
'Ontological Question' unaddressed. The ontological question was, “Does the class 
of entities that 'think' include computational devices?” In a perhaps trivial and 
somewhat facetious sense, we can certainly say that the class of entities that we 
sometimes talk about as 'thinking', and we are sometimes willing to attribute men-
tal properties to, does include computational devices. However, this leaves the 
deeper issue unresolved. 

Our hunch is that we should also be able to give the ontological question an af-
firmative answer also, subject to suitable qualifications, limits and caveats. How-
ever, a substantial set of arguments for this point will not be offered here. This 
point will not be directly addressed for two reasons. First, it would involve dis-
cussing considerations that would detract from the overall main point of this paper 
and take us too far afield. Second, and the most important reason in the current 
context, is that there is not space to mount a full defense of the view. Instead, this 
matter is best left as an intriguing possibility, for future consideration. However, 
in the meantime, broadly following Turing's (1950) rhetorical lead, it makes sense 
to proceed by considering two of the most obvious objections that might be raised 
against this suggestion.  
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6.1   The Metaphor Objection 

An obvious way of objecting to the claim that computational devices should be 
included in the class of entities that can be said to 'think' can be based upon the 
objection that when people speak as if they think computers can have mental 
properties they are just being metaphorical. After all, we also sometimes talk as if 
our computers are animate, when we say things like “My computer died”. Howev-
er, nobody really thinks that computers are truly animate. On the face of it, this 
appears to be a serious objection. However, it should not be taken to be compel-
ling, as the example is misleading.  

It is certainly the case that we often talk about mechanical devices as being 
animate. For instance, people will say things like “My car died.” Moreover, this 
appears unequivocally to be a case of metaphorical usage. The case of attributing 
mental states to computational devices is not the same though. There appears to 
something special about the connection between computers and the mental, which 
is not mirrored with other classes of things. After all, it would be very linguistical-
ly odd to attribute mental states to cars.  

Another way of countering this objection is to note that some theorists, for ex-
ample Nietzsche (1873) and Lakoff (1987), have argued that the metaphorical 
extension of the scope of terms is a fundamental mechanism of language. Al-
though this proposal is controversial, should it turn out to be correct, then even if 
the attribution of mental predicates to computational devices is metaphorical, it 
would be unobjectionable, as it would be just an instance of a normal linguistic 
process. Moreover, there are certainly plenty of examples of terminological 
changes over time. Above, the use of the term 'computer', initially for human be-
ings who performed computations, was mentioned. This usage was then extended 
to mechanical computational systems. Another instructive example comes from 
the term 'blockbuster'. According to the OED, this term was originally coined in 
1942 and applied to a kind of bomb that could destroy an entire city block. By the 
late 1950s the term applied to important and large ideas. Today, the term is used to 
describe very successful movies and is even used as the name for a video rental 
chain in the U.S. So, the claim that apparent cases of mental states being applied 
to computers are 'just' metaphorical, does not really constitute a decisive objection 
to the ontological thesis. 

6.2   The Derivative Intentionality Objection 

Another line of objection that can be raised against the claim that computational 
devices should be included in the class of entities that can be said to 'think' can be 
based upon a claim that the intentionality of any putative computational mental 
state is derivative. This is a line of attack that is discussed in Smith (1996, p. 10). 
He notes that, “Many people have argued that the semantics of computational sys-
tems is intrinsically derivative or attributed...” The idea here is that what is going 
on with computational systems is similar to the circumstances found with books 
and signs, where meaning is ascribed by outside observers. In some sense, the 
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objector maintains, all these things lack the original and authentic meaning that is 
associated with human thought.  

Smith is skeptical about this line of objection, though. His doubts derive, in 
part, from the fact that computational systems are increasingly embedded into real 
world environments. Consider, for instance the vehicle 'CajunBot' that competed 
in the DARPA Grand Challenge contest in 2005 (see Berkeley 2008 for a detailed 
discussion). This vehicle had sufficiently complex computational systems, at-
tached to various sensor systems,  to enable it to travel autonomously over nearly 
twenty miles of desert in Nevada. It is difficult, though, to say in what sense the 
semantics, or intentionality of this system was 'derivative'. It was necessary that 
the system had an awareness of obstacles, in order for it to be able to  function at 
all. Analogous claims could be made about the other systems that competed in the 
competition, also.  Thus, this serves to show that the derivative intentionality ob-
jection is not as compelling as it might initially appear. 

Smith (1996) offers another reason why this objection should not be taken too 
seriously.  He notes that even if the point was conceded that the semantics and 
intentionality of computational systems were 'just' derivative, they are nonetheless 
very real and of a complex kind. He notes that it is a mistake to think that 
'derivative' means fake in some sense. So, for this reason also, this line of objec-
tion should be resisted and not be taken to be compelling.  

7   Conclusion 

The main goal of this paper was to examine the claims and predictions made by 
Turing in his famous 1950 paper. In doing this, two distinct questions were dis-
cerned. One question, the ontological one, concerned whether or not the class of 
entities that 'think' includes computational devices. The other question, the seman-
tic one, concerned whether or not we can meaningfully assert sentences concern-
ing 'thinking' about computational devices. This latter question appeared to form 
the basis of Turing's (1950, p. 442) prediction that, 

...at the end of the century the use of words and general educated opinion will have 
altered so much that one will be able to speak of machines thinking without 
expecting to be contradicted. 

The bulk of the discussion in this paper has focused upon attempting to determine 
whether or not this prediction has come true. Four strategies for assessing this 
prediction were considered. The first relied upon simple intuition. Unfortunately, 
this is not a method that is sufficiently consistent or reliable to depend upon. So, a 
methodology involving simple web searches was tried in order to see whether 
people on the Internet apply mental predicates to computers. This method, though 
improved also had shortcomings. The final two methods examined stable corpora. 
One method involved searching for bigrams in the Google Books corpus. One 
virtue of this strategy was that it provided some insights into the views of 'general 
educated opinion', on the assumption that published books are written by the edu-
cated. The final method used the COCA corpus and had the virtue of making false 
positives detectable. Taken together, all these strategies exhibited a tendency to 
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support the conclusion that Turing's (1950) prediction appeared to be confirmed, 
albeit perhaps in a limited sense. This suggests that the Semantic Question can be 
answered in an affirmative manner. This appears to be a result of some philosoph-
ical interest. In addressing the Ontological question it was briefly argued that at 
least two of the obvious objections that can be raised to answering the Ontological 
Question in an affirmative manner are not compelling. However, a complete 
treatment of the question was not attempted.   

So, the take-home message here must be that it is not unusual to say that com-
puters think and to attribute mental properties and predicates to them. However, 
the genuine and legitimate membership of computers in the class of thinking 
things must remain just an intriguing possibility.  
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1 Background

“AS YOU read this article, your brain not only takes in individual words, but also
combines them to extract the meaning of each sentence. It is a feat any competent
reader takes for granted, but it’s beyond even the most sophisticated of today’s com-
puter programs. Now their abilities may be about to leap ahead, thanks to a form
of graphical mathematics borrowed from quantum mechanics.” So starts an article
from The New Scientist[1] highlighting the work of Oxford University Computing
Laboratory in quantum linguistics; a new approach to the study of language de-
veloped and explored by Bob Coecke, Mehrnoosh Sadrzadeh, Ed Grefenstette and
Stephen Pulman (drawing from earlier work by Samson Abramsky and Bob Coecke
on quantum computing). The article describes how the quantum and linguistics re-
search groups at the Oxford University Computing Laboratory, are enabling com-
puters to ‘better understand’ language by the application of the quantum picturalism
formalism to linguistics; encoding words and grammar in a set of rules drawn from
the mathematics of category theory. In this paper we investigate if ‘quantum linguis-
tics’ genuinely enables computers to fully understand text.

2 Quantum Physics

One morning in July 2011, at a meeting to discuss ‘Foundational questions in the
mathematical sciences’, held at the International Academy in Traunkirchen, Austria,
Bob Coecke from the University of Oxford, Slawomir Nasuto from the University
of Reading and Mark Bishop from Goldsmiths College gathered over coffee1 and
discussed why it had taken more than sixty years from the birth of quantum physics
to discover quantum teleportation. Bob suggested that the underlying reason was
because ‘Von Neumann Hilbert-space quantum mechanics’ does not easily allow
appropriate conceptual questions to be asked.

Bob subsequently outlined a radically new diagrammatic language - which he
calls ‘Quantum Picturalism’ (QP) - so simple that it could be taught in kindergarten,
but which is rich and powerful enough to facilitate simple derivations of relatively
complex results in quantum physics. To illustrate its simplicity and power Bob ex-
plained that he has conceived an experiment involving school children which he
anticipated would show quantum picturalism to be a ‘language’ powerful enough
to derive complex phenomena in, say, quantum teleportation, but simple enough
such that even kindergarten children could successfully use it with little or no prior
knowledge of physics. But would these school children really be doing quantum
physics we pondered over our coffee?

1 There has since developed a serious dispute between the three participants as to if the
discussion reported herein took place over coffee or over beer; or both.
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3 Quantum Picturalism

Quantum picturalism[6] defines a system consisting of formal operations2 on a set
of input/output (I/O) boxes connected by wires, which together define a QP picture
(see Fig. 1).

Fig. 1 A ‘Picture’ in the quantum picturalism formalism

Operations that can be performed on QP boxes include morphing and sliding:
morphing entails transforming QP wires by stretching and constricting them; sliding
boxes entails moving them around the image via ‘sliding’ them along the connecting
wires (see Fig. 2). Substitution rules (see Fig. 3) define how one or more boxes can
be replaced by another (or combined together or reduced/eliminated) to produce
new picture elements.

Considering the QP diagram in Fig. 4, the box associated with the label ‘Alice’
can easily be moved (slid) across to align under the box associated with the label
‘Bob’. Then, via the substitution rule shown in Fig. 3, both boxes can be combined
and reduced to a basic wire. Thus, after the application of two simple rules we obtain
a simplified QP diagram (on the right hand side of the equality) depicting Alice and
Bob linked only by a wire.

2 It could be argued, pace Wittgenstein on rule following[11], that such operations are not
‘purely formal’; the boxes have ‘meaningful tags’ and require a primitive operational ‘un-
derstanding’ to follow the rules (e.g. to see that sliding to a specific position is ‘OK’);
however, as is shown in this work, on its own any minimal ‘understanding’ that accrues
from formally manipulating QP elements in this way does not help ground the system in
the target domain.
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Fig. 2 ‘Morphing’ and ‘Sliding’ in the quantum picturalism formalism

Fig. 3 ‘Symbol substitution’ in the quantum picturalism formalism
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Fig. 4 ‘Quantum teleportation’ derived in the quantum picturalism formalism

Fig. 5 Symbol grounding in the quantum picturalism formalism

Then, by applying the interpretation given in Fig. 5, we can understand the re-
sulting QP diagram given in Fig. 4 in the context of the ‘world of quantum physics’
as meaning:

“Alice has an incoming quantum system (the input to the picture) and she and Bob also
share a Bell-state (the white triangle with the cup inside. Alice then performs a certain
operation on both of her quantum systems which depends on a unitary variable (the
other white triangle where the box plays the role of the variable). Bob performs the
conjugate to that unitary variable (the other box). The statement of equivalence with
the right hand side then means ‘At the end of performing the above stated instruc-
tions Alice’s initially incoming quantum system will be with Bob’. This phenomenon is
known as quantum teleportation”.
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In demonstrating examples of QP in action (as above) Bob showed how even rel-
atively simple formal operations on QP diagrams, in conjunction with understand-
ing of the appropriate QP interpretation, can lead to new insights into the world
of quantum physics; insights (such as quantum teleportation) which may not be so
obviously derived via classical application of Von Neumann Hilbert-space quantum
mechanics. Reflecting again on Bob’s proposed QP experiment with kindergarten
children, we discussed just how deep an understanding, if any, of the QP interpreta-
tion is necessary for QP users to be really doing quantum physics? At this point in
our discussion Slawomir recalled the work of Harré and Wang[8].

4 Is Syntax Sufficient for Semantics?

In a brief paper from 1999 Harré and Wang described experiments with a simple
pictorial ‘language’ comprising of a set of thirteen Chinese ideographs. Appropri-
ate exchange of the symbols [between subjects competent in reading and writing
Chinese ideographs] could facilitate very simple ‘conversations’ to take place: con-
versations3 of the form:

Speaker-1 enquires: ‘WHISKY??’
Speaker-2 replies: ‘DRINK!’

Speaker-1 enquires: ‘THIRSTY??’
Speaker-2 replies: ‘BEER!’
Speaker-1 concludes: ‘PUB..’

Harré and Wang subsequently developed and codified a simple set of ‘purely formal’
rules that could be used to automatically define appropriate responses for speaker-2
to make when passed symbols from speaker-1 (and vice versa). The rules of Harré
and Wang’s procedure described symbol transformations defined by a simple ‘look-
up table’ (or ‘rule-book’) which encapsulated two types of response:

• ‘Straight rules’ whereby, say, the symbol for ‘WHISKY’ is directly mapped to
the symbol for ‘DRINK’.

• ‘Branching rules’ whereby, say, the symbol for ‘THIRSTY?’, if followed by the
symbol for ‘BEER!’ maps to a response of ‘PUB..’; but if followed by the symbol
for ‘COFFEE!’ maps to a response of ‘CAFE..’.

In their paper Harré and Wang’s detail a series of experiments in which such ‘iconic
communication’ was deployed between pairs of non-readers of Chinese, with the
aim of determining if - by correctly iterating the application of the rule-book over
time - non Chinese readers ever became able to ground [even primitive approxima-
tions to] the meanings of the Chinese ideographs. I.e. They evaluated precisely what

3 Readers in Ireland and the United Kingdom might recognise this style of conversation, so
effectively deployed by Father Jack Hackett, in the Irish/British television comedy series
Father Ted.
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a subject actually experiences in the context of a simple ‘iconic languaging game’
as a result of repeated low-level rule-based interactions.

By stating in their conclusion that ‘none of our participants reported having any
sense of the meaning of the symbols’, Harré and Wang’s experiments demonstrated
in their experiments at least that the iterated application of a small number of simple
low-level rules to the manipulation of a small number of empty symbols, did not lead
to the emergence of any understanding of what the symbols might refer to (mean);
that syntax is not sufficient for semantics.

Of course the underlying claim - that syntax is not sufficient for semantics - is
clearly conceptual and not empirical and hence its truth or falsity is not established
by analysis of the Harré and Wang experiment described herein: as a reviewer of this
paper trenchantly highlighted such a move would be analogous to claiming support
for the conceptual philosophical assertion ‘when a tree falls in the forest and no
one is around to hear it doesn’t make it sound’ by carrying out experiments on
the particular cases of felling particular birch trees. However Mark recalled that the
claim has been extensively conceptually probed by the American philosopher John
Searle in his [now (in)famously] well known ‘Chinese room’ thought experiment,
first published in the 1980 paper Minds, Brains and Programs (MBP)[9].

5 The Chinese Room Argument

Mark summarised Searle’s Chinese Room Argument4 (CRA) as follows[3]:

“In 1977 Schank and Abelson published information[10] on a program they created,
which could accept a simple story and then answer questions about it, using a large
set of rules, heuristics and scripts. By script they referred to a detailed description
of a stereotypical event unfolding through time. For example, a system dealing with
restaurant stories would have a set of scripts about typical events that happen in a
restaurant: entering the restaurant; choosing a table; ordering food; paying the bill, and
so on. In the wake of this and similar work in computing labs around the world, some
of the more excitable proponents of artificial intelligence began to claim that such
programs actually understood the stories they were given, and hence offered insight
into human comprehension.

4 It is beyond the scope of this paper to summarise the extensive literature on the CRA
other than to note that, to date, the two most widely discussed responses to the CRA have
been the ‘Systems reply’ and the ‘Robot reply’. For a broad selection of essays detailing
these and other critical arguments see Preston and Bishop’s edited collection ‘Views into
the Chinese room’[2]. Conversely, by examining the application of the high-level quantum
picturalism formalism to linguistics, this paper focuses on a response popular with some
working within the fields of computing and artificial intelligence: that the ‘purely formal’
string-transformations defined in Searle’s rule-book are both too simple and too low-level
to ever facilitate the emergence of semantics and understanding.
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It was precisely an attempt to expose the flaws in the statements emerging from
these proselytising AI-niks, and more generally to demonstrate the inadequacy of the
Turing test5, which led Searle to formulate the Chinese Room Argument.

The central claim of the CRA is that computations alone cannot in principle give
rise to understanding, and that therefore computational theories of mind cannot fully
explain human cognition. More formally, Searle stated that the CRA was an attempt
to prove that syntax (rules for the correct formation of sentences:programs) is not suf-
ficient for semantics (understanding). Combining this claim with those that programs
are formal (syntactical), whereas minds have semantics, led Searle to conclude that
‘programs are not minds’.

And yet it is clear that Searle believes that there is no barrier in principle to the
notion that a machine can think and understand; indeed in MBP Searle explicitly states,
in answer to the question ‘Can a machine think?’, that ‘the answer is, obviously, yes.
We are precisely such machines’. Clearly Searle did not intend the CRA to target
machine intelligence per se, but rather any form of artificial intelligence according
to which a machine could have genuine mental states (e.g. understanding Chinese)
purely in virtue of executing an appropriate series of computations: what Searle termed
‘Strong AI’.

Searle argues that understanding, of say a Chinese story, can never arise purely as
a result of following the procedures prescribed by any computer program, for Searle
offers a first-person tale outlining how he could instantiate such a program, and act as
the Central Processing Unit of a computer, produce correct internal and external state
transitions, pass a Turing test for understanding Chinese, and yet still not understand a
word of Chinese.

Searle describes a situation whereby he is locked in a room and presented with a
large batch of papers covered with Chinese writing that he does not understand. Indeed,
the monoglot Searle does not even recognise the symbols as being Chinese, as distinct
from say Japanese or simply meaningless patterns. Later Searle is given a second batch
of Chinese symbols, together with a set of rules (in English) that describe an effective
method (algorithm) for correlating the second batch with the first, purely by their form
or shape. Finally he is given a third batch of Chinese symbols together with another
set of rules (in English) to enable him to correlate the third batch with the first two,
and these rules instruct him how to return certain sets of shapes (Chinese symbols) in
response to certain symbols given in the third batch.

Unknown to Searle, the people outside the room call the first batch of Chinese
symbols ‘the script’, the second set ‘the story’, the third ‘questions about the story’
and the symbols he returns they call ‘answers to the questions about the story’. The set
of rules he is obeying they call ‘the program’. To complicate matters further, the people
outside the room also give Searle stories in English and ask him questions about these
stories in English, to which he can reply in English.

After a while Searle gets so good at following the instructions, and the ‘outsiders’
get so good at supplying the rules he has to follow, that the answers he gives to the

5 In what has become known as the ‘standard interpretation’ of the Turing test a human
interrogator, interacting with two respondents via text alone, has to determine which of
the responses is being generated by a suitably programmed computer and which is being
generated by a human; if the interrogator cannot reliably do this then the computer is
deemed to have ‘passed’ the Turing test.
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questions in Chinese symbols become indistinguishable from those a true Chinese
person might give.

From an external point of view, the answers to the two sets of questions, one in En-
glish the other in Chinese, are equally good; Searle, in the Chinese room, have passed
the Turing test. Yet in the Chinese language case, Searle behaves ‘like a computer’ and
does not understand either the questions he is given or the answers he returns, whereas
in the English case, ex hypothesi, he does. Searle contrasts the claim posed by some
members of the AI community - that any machine capable of following such instruc-
tions can genuinely understand the story, the questions and answers - with his own
continuing inability to understand a word of Chinese; for Searle the Chinese symbols
forever remain ungrounded6.”

6 Complex Rule-Books

Historically, as Bob observed, Artificial Intelligence (AI) practitioners have been
incredulous at the extreme simplicity of the low-level rules described by Searle
(and deployed by Harré and Wang) that simply ‘correlate one set of formal symbols
with another set of formal symbols merely by their shape’, such that typically very
trivial combinations of un-interpreted symbols - Squiggles - map simply onto oth-
ers - Squoggles. It has always seemed likely to such AI experts that any machine
understanding program with a claim to real-world generality would require a very
large and complex rule-base (program), typically applying very high-level rules
(functions)7.

However it is equally clear from MBP that Searle intended the CRA to be fully
general - applicable to any conceivable [now or future] AI program (grammar based;
rule based; neural network; Bayesian etc): ‘I can have any formal program you like,
but I still understand nothing’. So if the CRA succeeds, it must succeed against even
the most complex ‘high-level’ systems.

So, in a spirit of cooperation (between computer scientists, AI practitioners and
Searle) let us consider a more complex formal program/rule-book-system which has
(as one high-level-rule) a call to, say, Google-translate. We suggest that the internal
representations scribbled on bits of paper used by the man in the room (monoglot

6 The ‘symbol-grounding’ problem[7] is closely related to the problem of how words (sym-
bols) get their meanings. On its own the meaning of a word on a page is ‘ungrounded’
and merely looking it up in a dictionary doesn’t help ground it. If one attempts to look
up the meaning of an unknown word in a [unilingual] dictionary of a language one does
not already understand, one simply wanders endlessly from one meaningless definition to
another (a problem not unfamiliar to young children); like Searle in his Chinese room, the
search for meaning remains forever ‘ungrounded’.

7 In contrast to the thirteen basic ideographs deployed by the Harré and Wang IBM’s WAT-
SON system - which recently won world wide acclaim as rivalling the greatest human
players of the USA TV game show ‘Jeopardy’ - effectively deployed a complex high-level
rule-book (literally thousands of complex algorithms working in parallel) on the full gamut
of natural human language.
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Searle), could now maintain [at least partial] interpretations of the [unknown] Chi-
nese text, as ‘symbol-strings-in-English’.

In this way it is apparent that, via a process analogous to ones gradual under-
standing of a Chinese text via the repeated use of a Chinese-English dictionary, the
application of [grounded] high-level-rules (Google-translate) to Chinese text would,
over time, foster the emergence of genuine semantics and understanding in even a
monoglot English speaker like Searle. Because both the rule-book and any internal
representations the rule-book requires (Searle’s ‘scribbles on paper’) are encoded in
English, and ex hypothesisi Searle brings to the room an understanding of English,
we suggest, pace Boden[4], that over time this extended English Reply would lead
to the emergence of genuine semantics for Searle.

But does a computer Central Processing Unit8 (CPU) really ‘understand’ its
program and its variables [encoded as raw binary data] in a manner analogous to
Searle’s understanding of his rule-book and internal-representations encoded in En-
glish? In her 1988 paper (ibid) Maggie Boden suggests that, unlike say the human-
driven manipulations of formal logic, it does; because, unlike the rules of logic, the
execution of a computer program actually causes events to happen (e.g. it reads and
writes data [or instructions] to memory and peripherals) and such ‘causal seman-
tics’ enable Boden to suggest that it is a mistake to regard [executing] computer
programs as pure syntax and no semantics; such a CPU processing Chinese sym-
bols really does have a ‘toe-hold’ on [Chinese] semantics. The analogy here is to
Searle’s understanding of the English language rule-book and hence the [extended,
high-level] English reply holds.

In contrast to Boden we suggest, pace Wittgenstein[11], that the computer CPU
does not really follow ‘rules of its program’ but merely acts in accordance to them;
the CPU does not understand its internal-representations [as it executes its program
and input] anymore than water in a stream ‘understands’ its flow down-hill; both are
processes strictly entailed by their current state and that of the environment (their
‘input’).

Furthermore, pace Cassirer[5], we do not consider the computer as it executes
its program with particular input(s) an ‘information processor with a concomitant
toe-hold in semantics, because we consider that the [physical] computer does not
process symbols (which belong to the human realm of discourse), rather mere un-
interpreted signals (binary digits [+/- 5v]) which belong to the world of physics.

‘All syntax and no semantics’ we suggest that, as there is no genuine sense in
which the CPU understands its rule-book in a manner analogous to Searle’s un-
derstanding of English, a CPU executing its program is simply not analogous to
monoglot Searle’s gradual understanding of a Chinese text via repeated use of an
English/Chinese dictionary.

To reflect that the CPU merely mechanically transforms the signals it processes
we simply insist, pace Searle, that the rule-book is defined only by syntactical op-

8 A CPU is the core component of a computer system that executes program instructions (its
algorithm or rule-book) by physically, and in most modern computers typically electron-
ically, fetching or storing (reading or writing) them to and from memory and evaluating
their coded commands.
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erations (albeit perhaps more complex than the simple ‘correlations’ originally sug-
gested by Searle and physically deployed by Harré and Wang) and the internal-
representations (‘scribbles on paper’), must remain defined by un-interpreted sym-
bols (cf. Searle’s ‘Squiggles and Squoggles’).

It is clear that, even allowing the rule-book to deploy high-level calls to, say
Google-translate, because the internal-representations Searle is forced to manipulate
remain mere un-interpreted signals (Squiggles and Squoggles), no understanding of
the underlying Chinese text can ever emerge. The process is analogous to monoglot
Searle’s frustrated attempts to understand an unknown Chinese text using, say, only
a Chinese/Japanese dictionary9.

7 Quantum Linguistics

This pioneering new approach to linguistics deploys quantum picturalism, the
graphical form of category theory10 originally developed for use in quantum me-
chanics and described earlier herein. Conventionally computers typically attempt
to ‘understand’ text as a collection of different words with limited structure; hence
a computer may find it hard to tell the difference between ‘Jane likes cheese’ and
‘Jane does not like cheese.’ Conversely, despite the similarity of words in these sen-
tences, their very distinct QP representations highlight their fundamental difference
in meaning.

Bob likened the situation to watching a television program at the pixel level;
‘rather than seeing the image, you get it in terms of 0s and 1s,’ he says, and ‘it
wouldn’t mean anything to you’. Similarly, by translating linguistic processes into
the higher-level QP formalism, ‘higher-level structures become visible’; in this man-
ner quantum picturalism offers new insights, helping modern computational lin-
guistic researchers develop ever more sophisticated natural language processing
systems. Nonetheless, because at its heart the QP formalism merely offers com-
putational linguistics a more complex (higher-level) rule-book, operating on more
sophisticated - but still un-interpreted - QP representations, we suggest that any
computational system qua ‘quantum linguistics’ remains as ignorant of the meaning
of the text it processes as Searle is of Chinese.

8 Conclusion

At the end of our coffee-house journey from quantum picturalism to quantum lin-
guistics via the Chinese room, we offer two modest observations made along the
way:

9 Or Mark’s lack of ‘understanding’ of quantum physics as he ‘blindly follow the rules of
QP with no concomitant understanding of an appropriate ‘quantum physics’ context; the
QP interpretation.

10 Category theory defines a branch of mathematics that allows different objects within a
collection, or category, to be linked.



28 J.M. Bishop, S.J. Nasuto, and B. Coecke

• Unless they bring to Bob’s proposed experiment relevant prior understanding
of the QP interpretation in the world quantum physics (e.g. what a Bell-state
is .., etc.), even if they discover a new result in quantum physics (e.g. quantum
teleportation) kindergarten children cannot really be said to be doing quantum
physics merely by correctly deploying the QP formalism.

• As syntax is not sufficient for semantics, even the mechanical execution of the
high-level rule-book of quantum linguistics, deployed across the full gamut of
natural language, will not result in a computational system genuinely capable of
understanding the text it processes.

In Watson IBM finally put Searle’s idealised component of the Chinese room (a
complex program [rule-book] sophisticated enough to accurately respond to ques-
tions posed in natural language) to the test and in one sense (to the surprise of some)
it passed; in Watson IBM have developed a system that [externally] exhibits aston-
ishing [as-if] understanding/intelligence of the Jeopardy style questions it is posed.
But would Searle, if he was ever locked in a ‘Jeopardy room’ and made to follow
IBM’s Watson rule-book, ever obtain understanding of playing the Jeopardy game?
We conclude that - as syntax alone is never sufficient for semantics - he would not.
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The Physics and Metaphysics of Computation 
and Cognition 

Peter Bokulich* 

1   Introduction 

For at least half a century, it has been popular to compare brains and minds to 
computers and programs.  Despite the continuing appeal of the computational 
model of the mind, however, it can be difficult to articulate precisely what the 
view commits one to.  Indeed, critics such as John Searle and Hilary Putnam have 
argued that anything, even a rock, can be viewed as instantiating any computation 
we please, and this means that the claim that the mind is a computer is not merely 
false, but it is also deeply confused. 

In this paper, I articulate a physicalist ontology of emergent properties, and I 
argue that this provides a framework for understanding the commitments of com-
putationalist and mechanistic accounts of the mind. My account is built on the 
physical concepts of dynamical system and a dynamical degree of freedom. I ar-
gue that all higher-level emergent entities and properties are the result of a reduc-
tion of the physical degrees of freedom (where these reductions are the result of 
aggregations and/or constraints imposed on the full set of degrees of freedom of 
the system).  

This ontological framework provides a response to Searle and Putnam’s argu-
ment that the computationalist model is vacuous because one could treat any  
arbitrary system (e.g., the molecules in a wall) as an instantiation of an arbitrary 
computer program (e.g., a word processing program). Their argument ignores the 
causal-dynamical aspect of any instantiation of a program; in fact, only carefully 
engineered systems (viz. computers) will have the counterfactual behavior speci-
fied by the computational model. We can give an ontologically robust account of 
which systems are instantiations of particular programs and which are not; this ac-
count will rely on the effective degrees of freedom of that system and the dynam-
ics that governs the evolution of those degrees of freedom. 

Physics provides us with very strong evidence for the truth of physicalism, and 
this ontology requires that all systems are mechanical systems. However, as  
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systems develop structure, some of the microphysical details become irrelevant to 
the functioning of the system. This allows for the emergence of higher-level states, 
which can then be correlated with other systems in the environment, and these cor-
relations can themselves be manipulated in a systematic law-governed way. Com-
putation is – at its metaphysical root – just such a manipulation of correlations.  
Information is real, and well-defined, even at the subatomic level. However, it is 
only when we have higher-level systematic manipulations of information that we 
have computation. 

2   Physicalism and Emergence 

It is widely agreed that the defining feature of physicalism is metaphysical super-
venience of all facts on the physical facts.  Thus if a world is identical to the actual 
world in all its physical facts, it will (if physicalism is true) have to be completely 
identical to the actual world (modulo some minor worries concerning negative 
facts, indexical facts, and so on1).  The metaphysical supervenience thesis captures 
the notion that physicalism requires that the story offered by physics is complete,2 
but it doesn’t imply that higher-level special-science stories (which are not 
phrased in the language of physics) are false; instead such accounts can be true as 
long as they are made true by the ontologically more fundamental physical facts. 

The requirement of supervenience is, I think, OK as far as it goes.  But it 
doesn’t go very far in explaining why and how higher-level facts metaphysically 
supervene on physical facts.  For this we need a more substantial metaphysical 
framework that allows us to understand how underlying physical facts fix special-
science facts.  We need an account of how higher level properties and entities 
emerge from the underlying physical properties and entities. 

There is a form of emergentism that is inconsistent with physicalism because it 
denies that all facts supervene on the microphysical facts.  Let’s call this position 
strong emergentism; it claims that the emergence of special science properties in-
volves going beyond the domain of purely physical properties and laws.  If the 
emergent properties are causal, then strong emergence involves a denial of the 
causal closure of physics.3  Weak emergentism, on the other hand, is compatible 
with physicalism and the causal closure of physics.  It simply holds that complex 
systems have certain features that are well-described by the special sciences.  
Higher-level properties are not eliminated by our physicalist ontology, they are in-
stead real complex features of physical systems.  So how does this work? 

The physicalist commitment to the causal closure of microphysics tells us that 
the physical laws continue to hold when the microphysical particles come together 

                                                           
1 See Chalmers (2010) for a detailed discussion of these worries, and how one might re-

spond to them. 
2 The worry is sometimes raised that, because current physics is incomplete, appeals to 

“complete physical stories” are unjustified.  In Bokulich (2011), I argue that the effective 
validity of quantum electrodynamics and classical gravity is sufficient to ground an un-
derstanding of a physicalist ontology of the mind. 

3 This claim is somewhat controversial.  I defend it in Bokulich (2012). 
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to form a complex system.  It is an important fact of physics that increased com-
plexity does not limit the accuracy of the micro-physical description of the parts.  
Thus, insofar as we are concerned with the dynamics that govern a system – i.e., 
with the causes of a system’s behavior – the microphysical story will be the most 
accurate, most complete, account of any process in the actual world.  Although in 
practice we will often have useful special-science accounts of processes but no 
useful microphysical account whatsoever, in principle it is the case that micro-
physical description of a system contains all the details of the system.  Information 
about higher-level properties does not count as additional information once we 
have the microphysical information in hand.  The real trick is to figure out how we 
can ignore the microphysical information that is irrelevant for whatever large-
scale process we are interested in.  To see how this works, it will be helpful to 
make use of a few concepts from physics. 

3   Systems and Degrees of Freedom 

Most metaphysical accounts of reduction are phrased in terms of entities, proper-
ties, theories, and laws; they will ask, for example, whether and how special-
science entities reduce down to microphysical entities and how higher-level laws 
reduce down to microphysical laws.  While laws are the core concern of physics, 
physicists usually do not consider these laws as applying primarily to entities or 
properties.  Instead, physical laws apply to systems, and it will be fruitful to take 
on board the basic ontology of physics to develop our metaphysics of emergence. 

There are several interrelated concepts that we will need if we are to understand 
systems, and an account of emergence based on systems.  A degree of freedom is 
an independent parameter that must be assigned a value to completely specify the 
state of the system.4  So, for example, a single particle has six degrees of freedom.  
In order to completely specify its physical state, we will need three numbers to 
specify its location (one number for each dimension of space) and three more 
numbers to specify its momentum (again, one for each spatial dimension of its 
momentum). 

The state space for the system is the space of all possible state values that the 
system can have.  This space will have one dimension for each degree of freedom.  
So the state space of our particle will be a six-dimensional space: three for the par-
ticle’s location (e.g., an x-coordinate, a y-coordinate, and a z-coordinate) and one 
more dimension for each of the three components of momentum.  The state of the 
system at a particular moment will be a point in the state space (the point picked 
out by the values assigned to the degrees of freedom). 

The physical dynamics specify the type of the physical system and the state 
space, as well as dictating how the state of the system changes over time.  The 
time evolution of the system will then be described by a trajectory through the 

                                                           
4 Here and throughout I am making use of Hamiltonian mechanics.  If we were instead to 

consider the Lagrangian formulation of mechanics, we would describe both the degrees of 
freedom and the state space somewhat differently.  However, the two formulations are 
equivalent, and the basic metaphysical story is unaffected by the choice. 
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state space – each point of the trajectory represents the state of the system at a par-
ticular time – and the dynamics allow us to calculate this trajectory from the initial 
state and the boundary conditions of the system. 

Our single particle has six degrees of freedom and a six-dimensional state 
space.  Of course, there are more complicated systems with more degrees of free-
dom and larger state spaces.  If we have two particles, we will need a twelve-
dimensional state space; six for the position and momentum of the first particle, 
and six more for the position and momentum of the second.  Each new particle 
adds six degrees of freedom to the system, so for N particles we will have a 6N 
dimensional space.  A single point in that space will then specify the complete 
physical state (i.e., the three position coordinates and the three components of 
momentum) for each of the particles.  We can then solve the dynamical equations 
of motion to find out how that point will move through the 6N-dimensional state 
space, that is, to find how the system’s state will evolve over time. 

Thus far we have been considering particles, which only have a location and a 
state of motion (momentum).  A rigid body (like a pen), however, also has an 
orientation.  To completely specify the state of an extended body like this, we 
need to specify not only where it is, but also which direction it is pointing; and in 
addition to its linear momentum, we will need to specify its angular momentum 
(i.e., how fast it’s spinning around each of the three spatial axes).  So a rigid body 
has twelve degrees of freedom.  Its state lives in a twelve-dimensional state space, 
and the dynamical equations of motion dictate how the state of the system evolves. 

So much for setting the stage.  Now let’s move to the metaphysically interest-
ing point.  The pen is composed of a vast number of particles.  Our rigid body 
with its twelve degrees of freedom is the very same system as the multitude of 
constituent particles with their trillions of degrees of freedom.  Here we have two 
different descriptions of a system – a higher level description of the composite ob-
ject and a lower-level description of the behavior of the parts – and both are legi-
timate physical descriptions of the system.  What is needed is a metaphysics of 
emergence that can ground these descriptive practices. 

4   Emergence and Constraint 

If there is a single slogan for emergentism, it is the claim that the whole is greater 
than the sum of its parts.  Indeed, this is often treated as a truism.  Looking at 
things from the perspective of physical systems, however, the claim gets things 
exactly backwards.  In fact, the whole can always do less than the sum of its parts 
can.  And so, insofar as what something is can be captured by what it can do, the 
whole is always less than the sum of its parts. 

Consider a rocket flying to the moon.  We’re inclined to say that it’s vanishing-
ly improbable that mere bits of iron, nickel, hydrogen, oxygen, and so on would 
come together and propel themselves all the way to the moon; obviously they need 
something more to make this possible.  However, the real trick of building a rock-
et is to prevent the particles doing all (or, rather, most) of the things that they 
could do with all the energy that is being released – since most of those things 
would be described as “blowing up.”  So the challenge of rocket engineering is to 
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put particles together in such a way that the system has only a very small number 
of effective degrees of freedom.  The rocket needs to be a rigid body with only 
twelve degrees of freedom (plus whatever degrees of freedom are involved in the 
maneuvering mechanisms, etc.), which means that we need to make sure that the 
rocket is able to do considerably less than can the particles that make it up. 

And what is true of a rocket, is true quite generally of higher-level entities and 
properties.  Emergent structure results from reducing the number of effective de-
grees of freedom.  A molecule can do less (not more) than the atoms that compose 
it.  A cell can do less (not more) than its composite molecules can.  An organism 
can do less yet.  At each stage of increased structure, we have a reduction in the 
total dimensionality of the state space of the system.  Some degrees of freedom 
become irrelevant and can be ignored.  (Of course, it is our decision whether we 
do ignore them, but it is an objective observer-independent fact that some details 
can be ignored.) 

The problem of the (weak) emergence of special-science processes, entities, 
and properties is thus a question of how a limited effective state space (and dy-
namics) emerges out of the full fundamental state space.  How do some micro-
physical degrees of freedom become irrelevant for some particular process?  There 
are two general mechanisms that make this possible: constraints and aggregation. 

We can describe the dynamical state of a pen with a mere twelve values be-
cause all of its particles are constrained in such a way that the distances between 
them remain the same (at least to the degree that it is accurate to describe the pen 
as a rigid body).  This is the result of a coupling between the particles that makes 
the rigid arrangement a stable state.  Of course, the fact that some degrees of free-
dom are now irrelevant depends both on the initial state of the system and the 
boundary conditions.  So, for example, if we pump enough energy into the system, 
extra degrees of freedom can become effective.  We typically call such a process 
“breaking.”  If we break a pen in half, the system will now have twenty-four effec-
tive degrees of freedom, rather than the twelve of an intact pen.  Structure elimi-
nates effective degrees of freedom.  Breaking structure reintroduces degrees of 
freedom; it makes underlying degrees of freedom effective again. 

A second way we can reduce the number of effective degrees of freedom of a 
system is through coarse-graining or aggregation.  So, for example, when we are 
calculating the orbits of the planets in the solar system, we can treat the sun and 
the planets as point particles and use a state space with only six dimensions for 
each body.  At the microphysical level, each planet has trillions of trillions of de-
grees of freedom, but a mere six of these are relevant for the planet’s orbital beha-
vior.5  This is because the gravitational effects of all the particles aggregate, so we 
need consider only the aggregated effect of the mass of each of the bodies on each 
other.  Likewise, when we have a thermodynamic system, we can neglect the  

                                                           
5 Note that there is typically no mapping from particular underlying degrees of freedom to 

the effective degrees of freedom that remain after aggregation or constraints are imposed.  
We can’t say, “It’s the y-component of this particular particle that remains effective for 
the planet’s orbit.”  Instead, it is simply the dimensionality of the space as a whole that 
gets reduced in most cases. 
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details of the momentum of particular particles, and instead make due with the ag-
gregated momentum transferred to the wall of a container over some period. 

It is worth emphasizing here that we are not primarily interested in how particu-
lar observers decide to describe the system, but rather in the objective facts in the 
world that make various descriptions possible.  Of course, we get to decide wheth-
er we are interested in volcanoes or planetary orbits, but once we decide on the 
phenomena we’re interested in, it is up to the mind-independent world to decide 
which degrees of freedom are relevant to those processes and which are not. 

5   Information and Computation 

To decide whether a particular property is relevant for some process, we need to 
know whether and how various degrees of freedom are coupled.  The Earth’s orbit 
is insensitive to my finger strokes on the keyboard, but the computer’s memory is 
dynamically correlated with the sequential depression of the keys.  Mechanisms 
arise through the systematic correlation of effective degrees of freedom, where 
constraint and aggregation render all the other degrees of freedom irrelevant.  A 
piston, for example, has only has a single degree of freedom (it can go up or 
down), and that degree of freedom is then correlated with the pressure of the gas 
in the cylinder (which, of course, is an aggregation of the linear momenta of the 
particles of the gas).  Cells, organisms, and societies likewise arise through con-
straints on and aggregations of their constituents, which result in complex correla-
tions between effective degrees of freedom. 

The correlation of one system’s state with another’s allows us to infer one state 
from our knowledge of the other – as long as we also know that the states are cor-
related.  Thus the one state carries information about the other.  At its physical 
root, information just is dynamically enforced correlations between the effective 
states of systems.  Information processing, then, is the systematic manipulation of 
dynamically enforced state correlations. 

To say that information is “systematically manipulated” is not simply to say 
that correlations dynamically evolve in some system.  Rather it is to say that way  
the information is processed is itself sensitive to the dynamical mechanisms that 
produce the correlations.  Thus an information processing system will have to 
maintain a stable dynamical relationship with whatever system(s) its information 
is about.  In biological organisms, these dynamical relationships are grounded in 
the mechanisms that allow for sensation and action.  In artificial computers, the re-
lationships are typically provided by the user interpreting input and output  
symbols. 

However, if we are going to explain cognition by appealing to computation, 
then (on pain of circularity) we cannot appeal to a cognitive agent in our account 
of computation.  Our metaphysical project therefore requires us to look for the ob-
jective observer-independent facts about some system that make it possible for an 
agent to interpret it as an instantiation of a particular computation.  Those facts are 
the effective casual dynamical structures that process information. 
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There are a variety of distinct notions of computation in the literature, but for 
our purposes here we need not choose between them.  Regardless of one’s particu-
lar computational model, it will be an empirical  question whether it is instantiated 
in the effective dynamics of actual thinking brains.  Thus we can view Turing ma-
chines, von Neumann computers, connectionist models, and dynamical systems 
accounts as variants of the general thesis that cognition is to be understood as in-
formation processing. 

6   The Computational Model of Cognition 

Computationalism is generally seen as a form of functionalism: what matters are 
the causal-functional relationships, not how those relationships are physically in-
stantiated.  But how are these causal-functional relationships to be characterized?  
Functionalism is obviously vacuous unless it includes a clear specification of the 
level of causal analysis that is required.  If we look from the astronomical level, all 
humans are functionally equivalent: they’re just an insignificant mass spinning 
around a star.  If we go all the way down to the microphysical level, on the other 
hand, then complete causal-functional equivalence implies physical identity – so 
multiple realizability is lost.  The computational model is an attempt to articulate 
the relevant level of functional analysis.  The claim is that on our way down from 
the astrophysical to the atomic level, there is in our brains a functional level that is 
properly described as a computation. 

However, several critics have argued that the computational model of cognition 
fails to offer a well-defined functional account, because there is no satisfactory an-
swer to the question of when a system instantiates a particular computation.  
Searle, for example, argues that it is a mistake to suppose that we could discover 
that something is a computer, because the syntactical characterization of computa-
tion always requires some agent interpreting some state of the computer as mea-
ningful.  There are no facts intrinsic to the physics, Searle claims, which would  
allow us to say that some system is objectively instantiating one particular pro-
gram while another is not.  Indeed, he tells us, nearly any complex system can be 
treated as an instantiation of almost any computer program: 

For any program and for any sufficiently complex object, there is some description 
of the object under which it is implementing the program.  Thus for example the wall 
behind my back is right now implementing the Wordstar program, because there is 
some pattern of molecule movements that is isomorphic with the formal structure of 
Wordstar.  But if the wall is implementing Wordstar, then if it is a big enough wall it 
is implementing any program, including any program implemented in the brain. 
(Searle 1992, pp. 208-209) 

Searle does not offer support for this claim, but one guesses that he has in mind a 
result proved by Hilary Putnam in the Appendix to his 1988 book, Representation 
and Reality.  Before turning to that proof we should notice that Searle’s reference 
to a “pattern of molecule movements” is potentially misleading in that it invites us 
to consider only the actual states of the particles in the wall over time.  However, 
it is clear that two systems can only be said to be running the same program if – in 
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addition to actually going through the same computational states – they also would 
have gone through the same states if they had been given different inputs.  Thus 
we need to consider the counterfactual behavior of the system as well, for without 
the proper dynamical  linkage between the states we do not have information, let 
alone information processing. 

Putnam argues that as long as we have system with a sufficient number of in-
ternal states, that system will be a realization of any finite state automaton.  His 
argument rests on the claim that the microphysical states of the system will change 
over time such that once the system transitions out of some particular microphysi-
cal state, it will not return again to that precise state (during the period of time 
we’re interested in at least).  Putnam tries to support this condition by pointing out 
that ordinary systems will be subjected to electromagnetic and gravitational forces 
from a variety of moving bodies (Putnam refers to these as “clocks” and offers the 
planets in the solar system as an example).  However, as David Chalmers (1996) 
points out, the mere fact that a system is not shielded from some varying force 
does not guarantee that the system’s state is noncyclic.  Forces can cancel out, a 
system can return to a stable equilibrium state after being perturbed, and so on.  
Indeed, it is difficult to discern exactly what state space we are supposed to be im-
agining when we consider a rigid body like a rock or a wall.  Part of the difficulty 
here, of course, is that the rigidity is ultimately a quantum mechanical feature of 
the system, and Putnam’s argument (like mine) is phrased in the language of clas-
sical mechanics.  But if we consider the atomic or subatomic states of an “ordinary 
open system” it will not generally be the case that irregular perturbations will 
guarantee that a particular system state will not recur.  

But these difficulties can be set aside, for, as Chalmers argues, Putnam could 
simply restrict his argument to systems that do contain a clock – that is, to systems 
whose internal states change continuously and noncyclically –, and if his argument 
succeeds, it would still effectively undercut the computationalist thesis.  Putnam’s 
strategy is to assign computational states to the physical states in such a way that 
the ordering (and causal connection) of physical states can be used to match what-
ever ordering (and causal connection) of computational states is required.  Put-
nam’s example is that of an automaton that transitions back and forth between two 
states A and B in the following sequence: ABABABA.  We can now simply consid-
er the physical state of our clock at seven sequential times, and this will given us 
seven states (s1, s2, . . . s7) with each earlier state causing the next state.  If we 
now define A to be the disjunction s1 v s3 v s5 v s7, and B to be the disjunction s2 
v s4 v s6, we find that our clock “instantiates” the finite automaton sequence 
ABABABA as required. 

This process can obviously be generalized to cover any number of computa-
tional states and any number of state transitions, so long as we have a sufficient 
number of distinct physical states of our clock.  If you tell me the sequence of 
computational states that is supposed to be instantiated, I can assign each of those 
states to a disjunction of physical states (the number of disjuncts will be given by 
the number of times that the particular computational state occurs in  the  
sequence). 
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There are some fairly obvious shortcomings to Putnam’s scenario, however.  
The first is that interesting computations (like Searle’s Wordstar program) will 
have to be able handle counterfactual state transitions in addition to the actual se-
quence of state transitions that it goes through on some particular run.  Further, in-
teresting computations will have to be sensitive to a variety of inputs.  As Chal-
mers points out, there is no reason to suppose that a mere clock will satisfy either 
of these conditions (and obviously a rock is only going to be worse off).  Howev-
er, Chalmers suggests two further modifications that will address these shortcom-
ings: to deal with counterfactual states, he stipulates that the system is to have a 
dial, to make it possible to change the overall physical state of the system (which 
can provide as many counterfactual states as we require – physical states which 
can then be added to the disjunctive definitions of computational states as needed), 
and the system is also to have a memory so that the input will change the physical 
state of the system throughout the time of the “computation.” 

The requirement that a system include a clock, a dial, and a memory will rule 
out Searle’s wall, but it’s clear that this is still problematically permissive.  If these 
modifications allow Putnam’s argument to stand, then it will still be the case that 
extremely simple systems can be said to instantiate any computation will like, and 
the computationalist account of mind will be empty. 

7   Causal Structure and Computation 

It is clear that the failure of a strategy like Putnam’s to provide a reasonable crite-
rion for whether a system is running a particular computation lies in the fact that it 
pays no attention to the internal causal structure of the system.  The Putnam strat-
egy allows for arbitrary groupings of states, and it is indifferent to the causal 
processes that make one state depend on another (except for the fact that earlier 
states dynamically evolve into later ones).  Thus it is not true functionalist account 
at all. 

Indeed, Putnam explicitly recognizes that a functionalist like David Lewis will 
insist on a much more robust causal connection that allows one to establish coun-
terfactual connections in a nonarbitrary way.  Putnam attributes this to the fact that 
he is making use of causal relations “of the type that commonly obtains in mathe-
matical physics” (p. 96), which is the dynamical evolution of one maximal state of 
the system into another maximal state at a later time.  Lewis, however, appeals to 
natural counterfactual connections, such that we can say that some possible worlds 
are “closer” to the actual world than others.  Putnam tells us, 

In certain respects the notion of causal connection used in mathematical physics is 
less reasonable than the commonsense notion Lewis is trying to explain (or to 
provide with a metaphysical foundation).  If, for example, under the given boundary 
conditions, a system has two possible trajectories–one in which Smith drops a stone 
on a glass and his face twitches at the same moment, and one in which he does not 
drop the stone and his face does not twitch–then “Mathematically Omniscient Jones” 
can predict, from just the boundary conditions and the law of the system, that if 
Smith (the glass breaker) twitches at time t0, then the glass breaks at time t1; and this 
relation is not distinguished, in the formalism that physicists use to represent 
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dynamic processes, from the relation between Smith’s dropping the stone at t0 and 
the glass breaking at t1.  Lewis would say that there are possible worlds (with 
different boundary conditions or different initial conditions from the ones which 
obtained in the actual world) in which Smith does not twitch but does release the 
stone and the glass does break, and that these worlds are more similar to the actual 
world than those in which Smith does not twitch and also does not release the stone.  
(p. 97) 

Putnam’s example here is somewhat misleading, however, for how are we to make 
sense of the claim that the system in question “has two possible trajectories”?  One 
assumes that Putnam is considering purely deterministic processes,6 so given the 
maximal specification of the initial state (and the boundary conditions) only a sin-
gle state at the later time will be compatible with the dynamics.  But if we do not 
specify the initial state, then there will be a vast multitude of possible trajectories, 
and it is hard to see what could rule out an initial condition in which Smith drops 
the stone and his face doesn’t twitch. 

Thus Putnam here is already picking out a subset of the worlds that are allowed 
by the physical dynamics and saying that some of them should be considered 
“possible” – despite the fact that the microphysical state in that universe is differ-
ent than in the actual world – while others should not.  Indeed, this is what we al-
ways do when we evaluate the truth of counterfactual claims; we find some way of 
picking out a non-actual world and saying that it is possible.  We can make this 
determination at the level of microphysics if we wish (e.g., when we ask what 
would happen if some microphysical state held), but more typically we pick out 
the relevant world by using higher-level emergent properties. 

The question, then, is whether we have adequate resources to characterize legi-
timate emergent properties and rule out the arbitrary disjunctions of microstates 
that drive Putnam’s argument against computationalism.  Putnam warns that “if 
what singles out the referents of the T-terms in folk psychology . . . is that these 
referents are ‘events’ which also satisfy certain counterfactual conditionals, and 
all this is explained in terms of a primitive notion of ‘natural class’ conjoined with 
a similarity metric over possible worlds, then Lewis’s account is not a reduction of 
the propositional attitudes to anything physical” (p. 98, emphasis original).  But is 
it the case that physics can offer us nothing besides arbitrary groupings of  
microstates?   

Matthias Scheutz argues that the problem facing both Putnam’s account and 
Chalmers’ refinement of it is the fact that they consider only groupings of physical 
states and do not pay sufficient attention to the causal structure of the transitions 
between states.  Scheutz argues that we should instead look at computational 
processes, that is, sequences of causal transitions between computational states, 
and ask whether these processes have the same causal structure as the dynamical 

                                                           
6 We could consider indeterministic dynamical evolution even in a classical context (for 

example there are multiple outcomes allowed by classical mechanics if three point par-
ticles collide at precisely the same instant), but it’s far from clear how this would result in 
a correlation between twitching and dropping – since the singularity that introduces the 
indeterminacy is based on an interaction, and it is only the uncertainty about the nature of 
that interaction that makes more than one trajectory “possible.” 
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transitions between the physical states that instantiate the computation.  (More 
precisely, Scheutz requires that the physical sequence be bisimilar to the computa-
tional sequence.  Mere isomorphism between physical states and computational 
states is not an adequate criterion for whether some physical system instantiates a 
particular computation). 

Scheutz’s criterion serves to rule out the artificial examples generated by Put-
nam and Chalmers, and goes a good ways towards capturing the functionalist re-
quirement that mental and computational kinds are to defined in terms of their 
causal relations.  However, his account appeals to groupings of physical states into 
types that will have a well-defined “causal transitional structure,” and we would 
like some account of how to pick out such groupings.   He does make the impor-
tant point that one should not conflate the grouping of microphysical states with 
the assignment of a computational state to that grouping.  We first need a physical 
account of the causal structure of the system, and then we can ask whether that 
system instantiates a particular computational process. 

8   Effective Dynamics and Computational Transitions 

As we have seen, Putnam holds that from the viewpoint of “mathematical phys-
ics” all groupings of physical states are to be considered fair game: “In physics an 
arbitrary disjunction (finite or infinite) of so-called ‘maximal’ states counts as a 
‘physical state.’”  But although we certainly may consider such arbitrary states, it 
is a mistake to suppose that mere disjunction is the only resource that physics of-
fers for coarse-graining microphysical details into higher-level kinds.  Given the 
physicalist account of emergence outlined earlier, it should be clear that what we 
should be looking for is an effective state space with a reduced number of degrees 
of freedom, and an effective dynamics that tells us how these higher-level states 
evolve.  As we have seen, such constructions are not arbitrary; they appeal to the 
actual dynamical structure of the system and therefore are a way of providing an 
objective physical account of emergent causal structure. 

It is important to recognize that the effective state space encodes information 
about both microphysical states and microphysical dynamics.  It would therefore 
be a mistake to treat a higher-level emergent state as a mere disjunction of micro-
physical states, for this would neglect the essential role that the dynamics plays in 
making some microphysical details irrelevant and thereby reducing the overall 
number of effective degrees of freedom.  Scheutz’s suggestion that we look to 
processes rather than (mere) states therefore applies not only to the question of de-
fining computational instantiation, but it also applies to a general metaphysics of 
emergence. 

However, this intertwining of dynamics and states means that we need to be 
careful when identifying higher-level effective physical states.  So, for example, 
Scheutz points to a seemingly paradoxical result that multiple computational states 
can apparently be assigned to a single physical state: “If an optimizing compiler, 
for example, detects that two variables have the same value at all times in a given 
computation C, it will map both onto the same machine register on a given ma-
chine M”  (Scheutz 2001, p. 556).  This is correct, but it is a mistake to suppose 
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that in such a case the relevant physical states are to be equated only with the reg-
ister values.  Rather, we should say that the dynamical intervention of the compi-
ler generates distinct effective physical states which make use of – or have as a 
component – the machine register.  The intertwining of dynamics and states in 
emergence means that the relevant effective physical states may be richer than the 
simple localized hardware that we think of as the “physical state at a time.” 

If one accepts the basic framework of a physicalist ontology, one should see the 
computationalist model of the mind as a particular hypothesis about the emergent 
structure of cognition.  A computation has a certain causal structure.  To say that a 
physical system instantiates that causal structure, then, is to say that the system 
has an effective state space that is isomorphic to computational states and effective 
dynamics that realize the causal relations of the computational model.  For exam-
ple, for a system to be an instantiation of particular Turing machine, it will have to 
have a dynamical subsystem (the read-write head) whose effective state is dynam-
ically correlated with the effective state of another subsystem (the tape), such that 
the two states become correlated (in one causal direction when reading and in the 
other causal direction when writing), and so on. 

Note that it is the robustness of the effective dynamics that allows us to use a 
physical system as a computer.  As is often noted, Putnam’s arbitrary assignments 
of computational states to the microphysical states of a rock provide none of the 
predictive power that we expect of real computers, because the dynamical evolu-
tion being appealed to is – by construction – completely uninformative.  However 
a physicalist account of computation imposes much more stringent requirements.  
If computation is a form of information processing, then the effective dynamics of 
the (computational) system will have to maintain the structures that realize the in-
formation (that is, the structures that dynamically guarantee the correlation be-
tween the effective states).  And, of course, once we know that the effective  
dynamics have the same causal structure as the computation we are interested in, 
we can then use the system as a computer. 

The facts about the effective dynamics and effective state of the system are 
nevertheless independent of how or whether we wish to use the system.  Thus the 
functionalist can, in principle at least, look to the brain to see whether a particular 
phenomenon of interest is an instantiation of some particular computational 
process.  A physicalist should view computationalism as a hypothesis (or a broad 
class of hypotheses) about the effective dynamics of brains. 

9   Conclusion  

The account sketched here does not fit neatly into the usual categories of the 
mind-body debate.  The standard way of teaching philosophy of mind has us con-
trast reductive materialism (which claims that mental types are physical types) 
with functionalism (which claims that mental types are functional types).  The 
(apparent) multiple realizability of mental states is then taken to rule out reductive 
physicalism (or the “type-type identity theory,” as it’s also called).  We then intro-
duce functionalism (a form of “token-token identity theory”) as a novel account of 
the ontology of mental states. 
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However, on the physicalist account I am defending here, higher-level multip-
ly-realizable types are also physical types.  It is physical constraints and aggrega-
tion that yield physical structures which are then described in a new vocabulary by 
our special sciences.  Indeed, we should take note of the fact that the majority of 
paradigmatic physical kinds are multiply realizable: pendulums, waves, inclined 
planes, gravitating bodies, gases at a given temperature and pressure, and so on are 
all multiply realizable, and yet they are obviously physical kinds. 

This account allows for multiple realization because the emergence of structure 
implies that some microphysical details are irrelevant for the large-scale behavior 
of the system.  So, for example, we may be able to ignore the question of whether 
certain parts of the system are made of silicon, or carbon, or aluminum, as long as 
the same effective dynamics emerges.  However, the fact that some details of the 
system are irrelevant for its large-scale dynamical behavior does not imply that 
any arbitrary grouping should be counted as a legitimate dynamical basis for in-
stantiating computational states.  We only have an instantiation of a computation 
when we have an effective set of dynamics that is the causal equivalent of the 
transitions in the computational model, and when we have an effective (physical) 
state space that is equivalent to the computational state space. 

I therefore conclude that the computationalist model of the mind is a legitimate 
empirical hypothesis; if it is to be discarded, it will have to be on the basis of em-
pirical research.  The causal transitions and state space of standard computational 
models are at a significantly higher level of abstraction than the biological level of 
emergent complexity.  I personally happen to be skeptical of the prospects of 
computationalist account of cognition, but Putnam and Searle’s attempt to under-
mine thesis with a priori considerations miss their mark. 
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The Two (Computational) Faces of AI

David Davenport

Abstract. There is no doubt that AI research has made significant progress,
both in helping us understand how the human mind works and in constructing
ever more sophisticated machines. But, for all this, its conceptual foundations
remain remarkably unclear and even unsound. In this paper, I take a fresh
look, first at the context in which agents must function and so how they must
act, and second, at how it is possible for agents to communicate, store and
recognise (sensory) messages. This analysis allows a principled distinction to
be drawn between the symbolic and connectionist paradigms, showing them
to be genuine design alternatives. Further consideration of the connectionist
approach seems to offer a number of interesting clues as to how the human
brain—apparently of the connectionist ilk—might actually work its incredible
magic.

1 Introduction

Artificial Intelligence (AI) is both a scientific endeavour that attempts to
understand human cognition and an engineering discipline that tries to con-
struct machines with human-like capabilities. Unfortunately, the lack of a
solid conceptual foundation makes AI, “an engineering discipline built on an
unfinished science” (Ginsberg, 1995). Although the subject matter of this
endeavour—the human mind—has traditionally been the realm of philos-
ophy, philosophy’s main contribution may have been to demonstrate that
common technical words including “symbol”, “representation” and “computa-
tion”, are more difficult to define than they appear. Not surprisingly then,
throughout its short history—beginning with the Dartmouth conference in
1956—AI research has seen a lot of heated debates, many resulting from mis-
understandings due to differing goals, backgrounds and terminologies. In the
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following paragraphs, I present my own attempt to understand and bring
some semblance of order to the topic. I approach the problem as an engineer-
ing task and begin by analysing the difference between the classical symbolic
& connectionist paradigms. Consideration of the functional requirements for
cognition, including the environmental/evolutionary contexts in which agents
find themselves, offers a basis for designs which are shown to be necessarily
computational in nature. This also offers a principled way in which to clarify
the relation between the symbolic and connectionist paradigms and helps to
set the scene for understanding how agents, and in particular we humans,
might acquire meaning, consciousness, feelings, etc.

2 Explaining Cognition

In the beginning there was symbolic AI, and it was good. Indeed, John Hauge-
land (1985) later christened it GOFAI (Good Old-Fashioned AI), to contrast
it with the upstart connectionist approach that gained support in the 1980s
following the publication of Rummelhart & McClelland’s (1986) book on PDP
(Parallel Distributed Processing). Connectionist networks (also known as Ar-
tificial Neural Networks, ANNs) were seen by many as a means to overcome
the problems being faced by the symbolic paradigm.

The classical symbolic approach sees cognition as computation, exemplified
by the digital (von Neumann) computer and, perhaps to a lesser extent, the
Turing machine. It is usually viewed as rule-governed manipulation of formal
symbols. It appears to be inherently sequential, with a centralised control
mechanism. It is generally considered to be logical and transparent, that is,
its inner workings can be expressed/understood in meaningful terms. The
symbolic approach has proved markedly successful, for example, so called
expert systems are able to perform complex tasks, such as medical diagnosis,
planning and configuration at the level of, and sometimes even better than,
human experts. On the other hand, they are difficult to program, brittle (a
single error often causing complete failure), not inherently able to learn, and
lack a biologically plausible mapping. This results in great difficulties when
it comes to building systems that can, for example, navigate around rooms
or interact using spoken language—both skills that children as young as five
acquire with apparent ease.

The Connectionist (ANN, PDP) approach, then, appeared to offer solu-
tions to precisely these difficulties. As a network of "neural-like" processing
units, it is naturally parallel and, with no clear centralised control, inter-
ruptable. It can learn from examples without the need for explicit program-
ming (though the results are often opaque; difficult/impossible for humans to
interpret). It is also tolerant of errors and, most importantly, has a (reason-
ably) obvious mapping to the human brain (which is assumed to be a net-
work of neuron cells at the relevant level of description). To contrast it with
the symbolic approach, some connectionists referred to it as "sub-symbolic"
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processing, a reference to the idea that concepts in ANN’s were seen as repre-
sented in distributed form and that processing often worked only on parts of
that representation/symbol (Chalmers, 1992), whereas in the symbolic form
the entire (atomic) representation was the object of processing. This was
just one way in which proponents of the ANN approach tried to differentiate
it from the classical paradigm. They fully expected connectionist networks
to be able to explain all of cognition. However, while it proved reasonably
successful at simple low-level learning tasks, it struggled to demonstrate sim-
ilar success at the higher levels where the symbolic approach had long held
sway. The proper solution was therefore unclear: was one of the paradigms
correct—in which case, which one—, or was it the case that a hybrid solu-
tion was needed—the ANN providing the lower-level learning that generated
the symbols to drive the symbolic level—, or were they actually genuine
alternatives—both able to support full-blown cognition—, or was there some
other fundamentally different alternative? Not surprisingly, discussions took
on the tone of religious debate, each group believing their position was the
only true answer, and trying time and again to prove it.

One of the most important criticisms of the connectionist approach came
from Fodor and Pylyshyn (1988), hereafter F&P. They pointed out that neu-
ral networks (of the time) were purely feedforward and lacked any sort of
ability to handle sequences of inputs. This led connectionists to develop re-
current ANNs, whereby some of the output (or hidden layer) neurons feed
back to form part of the input vector, so providing "context" for the next set
of sensory inputs. This is equivalent to adding feedback loops to combinatorial
logic to obtain sequential machines, and so provides the necessary capability,
but (I suggest) does not provide a good conceptual foundation upon which to
build. Another point raised by F&P was that representations must be (a) in or
out of structure, and (b) active or inactive. They argued that the distributed
representations favoured by most connectionists failed to have the necessary
structural characteristics (since they were simple vectors), but even if they
did (as, for example, in the case of a parse tree for a sentence) then there
was no way for the network to make use of such information. Again, there
now appear to be mechanisms (e.g. temporal) by which such structure might
be extracted, so this argument against connectionism also appears to have
been met. One interesting point not made by F&P, is how the symbolic ap-
proach fares with regard to these representational criteria. Clearly it manages
structural concerns (using syntax and concatenation–and some semi-magical
mechanism to process it), but what determines whether a representation is
currently active or not? Either it is conjoined with a truth token or, in mod-
ern digital computers, it is its particular (memory) location that indicates
its status–both, in effect, giving a special, perhaps unwarranted, place to the
notion of truth.

It was Searle (1980) who pointed out another major problem with the clas-
sical symbolic approach: the fact that its symbols didn’t actually mean any-
thing! His now infamous Chinese Room thought experiment suggested that
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manipulating meaningless "squiggles" was never going to result in meaning;
that syntax was not sufficient for semantics. The ensuing debate has a long
and tortuous history. It began with the idea that symbols can gain meaning
from their relations to other symbols. This won’t work—it is like looking up a
word in a foreign language dictionary—the explanation, in terms of yet more
foreign words, doesn’t help (even if you look them up, all you get is more
foreign words). Ultimately you have to know what some of the words mean,
i.e. some of them must be "grounded" (Harnad, 1993). Grounding, in essence,
requires causally connecting symbols to the world, such that when an agent
sees, for example, a cat, the corresponding "cat" symbol is "tokened". This
suggested that the connectionists were on to something after all. Unfortu-
nately, there are a number of difficulties with this too, including questions
about how such symbols arise and how they can be in error. The best answer
we have so far is that a symbol/representation/state has meaning for the
agent if there is a possibility that it can use it to successfully predict and act
in the world (Bickhard and Terveen, 1995; Davenport, 1999).

Of course, the most obvious difference between people and computers is
our apparent subjectivity, our awareness, and the feelings we have about
the world. Dreyfus(1972; 1992) argued that human intelligence and expertise
rely on unconscious instincts and intuition, which cannot be captured by
formal rules. If, by this, he is referring to our inability to verbalise these rules
and our difficulty in realising how we solved a problem, then he is correct.
However, this does not preclude physical entities, other than people, from
doing likewise.

Partly in response to the difficulties perceived as inherent to the
symbolic and connectionist paradigms, a number of proposals for more
radical alternatives started to appear. These included dynamical sys-
tems (van Gelder, 1995), embodied cognition (Gibson, 1979), radical em-
bodied cognition (Chemero, 2009), embedded cognition, situated cogni-
tion (Robbins and Aydede, 2009), extended cognition/mind, interactivism
(Bickhard and Terveen, 1995), enactivism, etc. In essence, these divide the
(design) space into those that see cognition as based on representations
versus those who favour an eliminativist (non-representational) approach
(computational/non-computational); those who see the body as an essen-
tial component of cognition versus those who see it as incidental (a mere
input/output device), and those who see the environment as crucial versus
those who see it as incidental. As is often the case, such dichotomies seem
contrived, specifically designed to focus on certain aspects of the problem
that have, perhaps, been neglected in the past. Ultimately, the truth must
lie somewhere between the extremes and include aspects of each viewpoint.
In the following sections I will present my own (simple-minded engineer’s)
attempt to understand and clarify things.
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3 Engineering Intelligence

The engineering process traditionally recognises requirements, design and
implementation phases, followed by test, distribution and maintenance. The
requirements phase is concerned with function; identifying the problem to be
solved. The design phase then represents an abstract solution to the problem,
a plan which is then implemented (in the implementation phase) producing a
concrete mechanism that matches the design. The mechanism (product) can
then be tested for correct functioning and, if all is well, distributed to cus-
tomers. Finally, the maintenance phase usually comprises incremental bug-
fixes and updates that improve the system. I will now look at the process of
designing a cognitive AI with reference to each of these engineering phases
with the exception of the test, distribution & maintenance phases, which we
need not concern ourselves over since these are clearly and very competently
handled by the environment & evolution (which is unmerciful in weeding out
those less successful designs).

3.1 The Requirements Phase

In order to design a product, be it an AI or a toaster (or an AI toaster), it is
first necessary to determine what it needs to be able to do and what context it
is to operate in. For the toaster it is relatively simple, it needs to heat up bread
in such a way that the surfaces burn slightly and it must do this in a context
where the bread comes in slices of certain dimensions and where there is 220
volt electricity available (not to mention an environment with certain gravity,
and an appropriate atmosphere containing sufficient oxygen, etc., etc.). For
an agent, natural or artificial, its primary goal will (usually) be survival in a
very complex and changing environment. For biological creatures, this means
maintaining an ability to move around in order to find nourishment and
to sustain themselves, while avoiding any physical damage. Among other
things, this requires maintaining an appropriate body temperature, blood
pressure/flow, etc., being able to locate suitable food, and avoiding predators.

Some of these tasks are relatively simple, but some are extremely tricky due
to the inherent vagaries of Nature. As McTear (1988) eloquently put it, "the
unpredictability of the world makes intelligence necessary; the predictability
makes it possible". Agents must try to take advantage of any regularities
they can uncover in order to select the course of action best suited to their
goals. The fact that they are small (but presumably physical) parts of the
physical world, implies they are likely to have only limited knowledge and
so be subject to error. Agents must somehow detect the situation they find
themselves in, try to predict the outcomes of any possible actions, and then
select the action that appears the most beneficial. Ideally, they will need to
remember the consequences of their actions so they can learn and perhaps
choose a more preferable option, should they encounter a similar situation in
the future.
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In an abstract sense these are all control problems, the complexity of which
vary widely. Consider, for example:

• maintaining body temperature / blood pressure, ...
• tracking prey/predator even when occluded, walking/climbing, ...
• conversing in English, doing math, socialising, creating/telling fiction, ...

The (design and) mechanism for accomplishing each of these (control) tasks
would be different. For instance, the first (simplest) sorts of task require only a
simple fixed feedback system. The relevant decision-making data is generally
available, the possible actions are few and known, and so almost no learn-
ing is needed. More sophisticated tasks may require feed-forward predictive
controllers, and may be expected to work with less reliable information (in-
complete & noisy sensory data), and to demonstrate very complex patterns of
behaviour that might change based on experience. The most complex tasks,
those so far unique to humans, require what might be called knowledge-based
controllers. Such a device would be characterised by its ability to handle an
extremely wide range of situations and to learn, so that it may not perform
the same even under identical circumstances. It is this level of performance
that is the focus of Newell & Simon’s (1976) "Physical Symbol System Hy-
pothesis" (PSSH), which claims that "A physical symbol system has the
necessary and sufficient means for [human-level] intelligent action". A physi-
cal symbol system is, roughly, a physical implementation of a symbol system;
that is, of a set of symbols and a set of (inference/rewrite) rules that specify
how the symbols can be manipulated. Newell & Simon couch their definitions
in very general terms, such that it might be taken to include both symbolic
and connectionist-like systems. They also assume that the symbols involved
"designate" things in the world. The evidence they offer for the truth of
the PSSH is (a) the obvious successes of symbolic AI and, (b) psychological
experiments that show that human problem solving involves symbol manip-
ulation processes, which can also be modelled by AI symbol systems. Fodor’s
(1975) Language Of Thought theory provides further support, as does the
simple fact that humans can simulate universal Turing machines. Notice that
a PSS-level mechanism could perform the simpler tasks, but there is no way
that the simpler mechanisms could perform the PSS-level tasks. Having thus
sketched the requirements for a cognitive agent and the context in which it
must function, it is now time to move on to the design phase.

3.2 The Design Phase

Design is obviously constrained by requirements, but also by the properties of
materials available for the implementation. To take an everyday example, if
the requirements are to shelter human beings from the extremes of tempera-
ture, wind and rain (on this planet), then we might do this by building houses
made of wood, of brick, of concrete, or of steel and glass (though probably
not silk or banana skins). Even suitable materials obviously have different
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characteristics, such that we could build skyscrapers with two hundred floors
from steel, but presumably not from wood. Availability is another concern;
there may well be situations where steel is not an option and wood actually
provides the best/only choice. What materials are available, their characteris-
tics, and our ability to work with them, can thus significantly shape the range
of design solutions. When it comes to designing a cognitive AI, however, it
may not even be clear what materials are suitable. Clearly, biology works,
but what of semiconductors or perhaps something else? What properties are
relevant? To answer this question will require a slight digression.

I claim (and will try to argue) that cognition is essentially control, or-
ganised around a prediction/modelling mechanism, and that the design of a
prediction/modelling mechanism can be expressed/described as a computa-
tion. This is a broad (and perhaps controversial) view of computation, but
one I feel is justified. We humans naturally construct mental models of our
environment (not to mention models of fictional worlds or situations). We
then use these models to respond to questions about the actual (or imagi-
nary) world. In the most sophisticated cases, such models are used to run
"simulations" of the world, so as to predict possible future states and to see
how those may change should the agent act in different ways. Armed with
the outcomes of these simulations an agent can then select the action it sees
as the most beneficial. Now the question is how such models (or simulations)
can be constructed and run. Modeling of the real world must mean that states
of the model can somehow be mapped to states of the world and that the
sequence in which the states evolve also follows the same trajectories (notice
that time in the model does not have to be the same as in the real world, only
the sequence matters). What determines the sequence of states? Clearly, the
causal pathways. When implementing such a modeling mechanism we have to
rely on causation. We can either try to find an existing system with the appro-
priate dynamics, construct one anew, or, more commonly nowadays, we can
turn to our universal machine, the (digital von Neumann) computer, that can
be programmed to provide any desired causal behaviour. Notice that the only
concern is the causal evolution of the system. None of the material properties
matter, unless they impact the causal flow. Thus biology, semiconductors,
or beer cans, are all equally suitable materials for constructing such devices.
A program/algorithm/computation, then, is simply "an abstract specifica-
tion for a causal mechanism" (Chalmers, 1995; Davenport, 1999) that will
implement the model/computation. Learning involves changing the causal
pathways so as to produce different behaviours.

Designs for the simplest sorts of tasks (e.g. maintaining body tempera-
ture or blood pressure) can now be cast in this light. Take, for instance, van
Gelder’s (1995) example of Watt’s centrifugal steam engine speed governor
(which he claimed had no representations and so was not computational and
thus necessitated a dynamical systems approach). Such a governor needs to
select one of only two actions (increase or decrease the steam going into the
engine), directly predictable from the current engine speed. Any mechanism
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that provides such control is acceptable. The mechanical linkages of Watt’s
centrifugal governor do exactly that, simply and reliably. The device could, of
course, be replaced with appropriate sensors, actuators and a control system,
electronic or biological, though these may prove much less reliable. Notice,
also, that there may be numerous designs for the inner workings of the control
system (feedback, feedforward, bang-bang, etc.), but that, providing the re-
quirements are met, they are all candidate solutions. Note too, that they are
all causal mechanisms and so have a computational description; i.e. they are
computational with reference to our broad understanding of computation.

When it comes to designing agents capable of displaying human-level be-
haviour, we most certainly need a more sophisticated mechanism—a PSS,
equivalent to a general-purpose von Neumann machine. Given that an agent
can have no a priori knowledge of the world’s regularities1, it would seem that
the best it could do would be to store what it senses and detect when a simi-
lar situation occurs again. Of course, it also needs to maintain a record of the
sequence of situations, including any actions it may have taken. Given "sit-
uation, action, new situation" data, it should have the information it needs
to make "intelligent" actions in the future, but how? In order to shed light
on this and to help resolve a number of important issues, in particular the
fundamental difference between the symbolic and connectionist approaches,
it is necessary to go right back to basics.

4 Back to Basics...

How can we communicate and store messages? Imagine we have a man on a
far away hill, with a flag in his hand. To begin with, he can hold the flag in
only two positions, either down in front of him or up above his head; initially it
is down in front of him. An agent observing this distant man suddenly notices
that the flag has been raised. What is he to make of this? There seem to be two
possibilities. First, the pair could have established a convention beforehand,
such that, for instance, the man raises his flag only if an enemy is approaching.
Thus, on seeing the flag go up the observer quickly prepares, pulling up the
draw-bridge and manning the battlements. The second possibility is that no
convention has been established, so when the flag is raised the observer can
only guess at its purport. Let’s say he assumes the worst, that the raised
flag means imminent attack and so he takes the precaution of pulling up the
draw-bridge and manning the battlements. Thankfully he is mistaken and it
was not an enemy approaching. Unfortunately, it is some rather important
guests who are taken aback by the unfriendly reception. The next time the
man raises the flag the observer recalls the embarrassment and so quickly
begins preparations to welcome honoured guests. But again he is mistaken.
1 It might be argued that evolution has naturally selected for certain architectural

characteristics (both physical bodies and mental structures) which, in effect,
embed some a priori knowledge of the world.
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This time it turns out to be the local tax collector who is overawed by the
reception, but thinks it may be a bribe. The observer might continue this
guessing game or he may decide to experiment, sending out invitations to
various parties to see which ones invoke the man to raise his flag. Through
such interactions the observer can build up a better picture of just what the
signal means, and so hope to avoid any untoward situations in the future.

There are two ways in which this simple signalling system could be ex-
tended to communicate more messages. The first and most obvious way would
be to allow the man to hold the flag in more positions; for example he might
be able to hold it out to the left and to the right, in addition to above
his head and down in front of him. This would allow him to communicate
three messages. This could be further extended, in theory to allow him to
signal an infinite number of messages. Of course, he would have practical
difficulties doing this, as would the observer in attempting to decide which
message was being sent. The distinction between a limited number of discrete
messages and an infinity of messages, is the difference between the discrete
and (continuous) analog forms of communication2. Note that the messages
are mutually exclusive, so that only one message can be communicated at
a time. The other way to extend the number of messages would be to have
more men, each with their own flag and each of whom could communicate
a message independent of (and simultaneously with) the others, so (given
only two flag positions), two men could communicate two messages, three
men three messages, etc. Alternatively, if the men are together considered
to be communicating a single message, then two men might communicate
three mutually-exclusive messages, three men seven messages, four men 15
messages, and so on3. One final variation would be to communicate parts
of the message at different times. This corresponds to so-called serial versus
parallel communication. In both cases, additional consideration may need to
be given to synchronisation, but we will leave this aside for now.

In addition to communicating messages, an agent must be able to store the
messages it receives and later recognise them if they occur again. Consider
a set of (sensory) inputs to the agent–corresponding to the men with flags
in the previous paragraphs. There appear to be two fundamental ways in
which messages might be stored. The first way to remember an input pattern
would be to create another set of men with flags (one man for each input),
and have them simply copy the state of the corresponding input. This could
be repeated for each instant, which would obviously require a lot of men and
flags, unless they were reduced by storing only previously unseen patterns.
2 The term digital is sometimes, perhaps incorrectly also applied to discrete en-

codings. The term analog also has another meaning, often conflated with this
one, wherein it refers to a value, usually encoded in a specific material property,
that varies in direct proportion to another value, e.g. the height of mercury in a
thermometer varies in accord with the ambient temperature.

3 In each case, one combination of states (e.g. no flags raised) must be used as a
background, “no message”, signal.
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For an agent to recognise when an input pattern reappeared would require it
to compare the present input pattern with all the previously seen and stored
patterns. It might attempt to do this in parallel, in which case there must
be some mechanism to consolidate the ultimate "winner", or it may do it by
sequentially comparing them, perhaps placing a copy of the winner into a
certain winner’s location. While these are possibilities, they seem messy and
unintuitive, a situation that would be compounded when it became necessary
to store and extract sequence information and to handle inexact matches.

Contrast this with the other fundamental way in which the storage and
recognition might be managed. This time, create only a single man and flag
for each instant, but establish links (wires/pathways) from him to each of
the inputs that are presently signalling (but not to the inactive ones). Now,
when a previously seen input pattern reappears, the links connect directly to
the corresponding man who can quite easily use his flag to signal that all the
previously seen inputs are once again present. In the case of partial matches,
should several men share a particular input then they become alternatives.
Hence, if one has more of its input pattern active, then it can suppress the
other less likely combination in a winner-take-all fashion. Extending this to
store and detect sequences is also relatively straightforward. Furthermore, the
newly created men—that link to the (sensory) inputs—can form the input
pattern for yet another higher level of men and flags, and so on for as many
levels as required.

5 Is Cognition Symbolic or Connectionist?

Earlier we asked what the relation between the symbolic and connection-
ist paradigms was: was only one approach correct and if so which one?
Was a hybrid solution required? Were they actually alternative approaches,
or were neither correct and so some other solution needed to be sought?
The subsequent discussion has hopefully clarified this. The copy and link
storage-recognition methods provide a clear and principled way to distin-
guish the paradigms. The classical symbolic paradigm is based on the "copy"
mode; whenever a representation is needed in an expression, a new copy
(token/instance) of it is generated (in the same way that, for example, the
letter ’a’ is copied over and over again, as it is used throughout this paper).
In contrast, the connectionist paradigm is clearly based on the "link" mode of
storage; whenever a representation is needed in an expression, the expression
is linked to a single existing version of the representation. This distinction
is equivalent to parameter passing by-value (copy) vs. by-reference (link) in
computer programming languages.

The symbolic and connectionist paradigms thus appear to be genuine al-
ternatives; that is, an intelligent agent could equally well be designed and
implemented using either approach. To be fair, it is still not certain that the
connectionist (link) scheme can actually provide the necessary functionality,
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but as I will try to demonstrate below, I believe it can. Indeed, given that
the human brain almost certainly uses the "link" scheme, it makes sense to
concentrate efforts on explicating it. In the following paragraphs I will try to
show how the connectionist approach outlined above, may provide insights
into some of the more perplexing puzzles regarding human consciousness
experience–intuitions which the symbolic approach fails to give any real clue
about.

6 Connectionist Insights

So far we have seen how an agent can store sensory input by creating causal
links from the active inputs to a newly allocated man and flag. It can take
the outputs from such men and use them as inputs to another tier, and so
on, to produce a (loose) storage hierarchy. When new input is received it is
matched against this hierarchy. In cases where only a partial match can be
found, links to any unmatched inputs form "expectations" (since they were
active on a previous occasion). Hence the agent has "anticipations" of the
missing signals. If we assume that the men (like neurons) retain their state
for at least a short amount of time after the input signals are removed, such
expectations can serve to "prime" the hierarchy so that interpretation of
subsequent inputs will tend towards matches that include previous solutions.

Assume, now, that "nodes" (men or neurons) can detect and store either
simultaneous input signals (as before) or signals that arrive in a particular
order (i.e. signal "A" precedes signal "B"). Coupling this with the idea of
"state-retaining" nodes provides a means to accommodate sequence process-
ing (an alternative to the feedback employed by recurrent neural networks).
Finally, notice that state-retention can provide a decoupling of nodes higher
up the hierarchy from those closer to the input layer. Together, such fea-
tures may provide a way in which goal-directed behaviour might be achieved
and understood–the very top level nodes remaining active and providing the
expectations that guide the lower levels.

We have already seen that agents use the information they store for the
prediction and selection of appropriate actions. The mechanism thus forms
a model that can be run to simulate what will happen. Of course, initially
models will be very simple and incomplete; each man and flag being essen-
tially a "model" of some relationship in the environment. Over time, however,
more sophisticated models will evolve and be refined as a result of interac-
tions with the environment. The decoupling mechanism is a vital part of this
since it allows models to run simulations independent of the current sensory
input, enabling longer term planning and actions. Note that agents will al-
most certainly retain and use multiple models with varying levels of detail
and completeness, so that they can respond rapidly when the need arises, but
be able to “think it through” if time allows.
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Given that agents are part of the environment they act in, they naturally
need to model themselves too. Any reasonably sophisticated agent will thus
develop a "self" model—that we ultimately label "I" or "me" after acquiring
language. Our history of interactions with the world, including other agents
in it, becomes associated with this model, gradually building up our personal
identity.

Finally, and much more speculatively, the expectations that result from
missing inputs may help explain "feelings". Should a node become ac-
tive without any of its inputs—as a result of higher-level expectations, for
example—then it will produce "expectations" on all of its inputs. These
"prime" each of the inputs; a situation very much like the original one when
the actual inputs were present. Note that similar stimulation may result dur-
ing dreaming and during brain surgery when a neurosurgeon stimulates in-
dividual neurons.

6.1 Internal & External Symbols

So far only signals (representations/symbols) that are internal to the agent
have been considered. External symbols, words, signs, etc., also have inter-
nal representations. How can such external symbols gain meaning? Assume
we have one hierarchy (of men with flags) that store and recognise certain
physical states of affairs, for example a cat or a dog, when seen by the agent.
Assume also that there is another hierarchy in which the agent stores and
recognises audible states of affairs, for example the spoken word "cat" or
"dog". Situations will arise in which the spoken word and the actual entity
are present simultaneously, and the agent will store these states of affairs in
the same manner as any other (linking the relevant nodes in each hierarchy to
a new node). Subsequently, on seeing a cat, the previous situation (in which
the word & object occurred together) will be recalled and so–as a result of the
normal mechanism that fills-in missing inputs–the expectation of the word
"cat" will arise. Similarly, should the word "cat" be heard it will produce an
expectation (a mental image) of a cat. In this way, then, external symbols
acquire meaning for the agent.

When it comes to actually describing a situation it is necessary to "ex-
tract" structure from the network to form verbal sentences. Recall that F&P
argued that this was not possible in ANNs, but if we accept that the agent
abstracts the natural language’s grammar in yet another heirarchy, it is not
inconceivable that the basic mechanisms described above could combine it
with the specific situation to generate the necessary words one-by-one.

6.2 Connectionist Logic?

The link (connection) storage method is clearly reminiscent of the connec-
tionist (ANN) approach, each newly created man being like a neuron with
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multiple incoming links (dendrites) and a single output (axon). Given that
the man is created when all his inputs (say a, b, & c) are active, his output
(z) might be expressed as "if a & b & c then z". This form is known as a
Horn clause and is common in Prolog and rule-based expert systems. Unfor-
tunately, when interpreted as a material implication P -> Q, the "logic" is all
wrong. At the very least, since z was created only when a, b & c were active,
given z we should definitely be able to say a & b & c were true. Logic, how-
ever, dictates that given Q & P -> Q, no conclusion can be made regarding
P; see Davenport (1993b) for a more detailed discussion.

Inscriptors (Davenport, 1993a) seem to offer a much better formulation,
viz. "if z then a & b & c". Viewed as a material implication, this allows us
to conclude a & b & c from z (as desired) and, using abduction, correctly
suggests that z may be true if any subset of a, b and/or c are true. It is
only possible to actually conclude z if it is the only candidate, and even then
it may be wrong. A similar form of reasoning was used very successfully by
Peng and Reggia (1990) in medical diagnostic expert systems based on their
Parsimonious Covering Theory, providing some evidence that the approach
described here is viable.

It is interesting to note that the mechanism employed by each "neuron"
provides logical non-monotonic reasoning. The decisions it reaches must be
(logically) correct—given the agent’s limited knowledge and processing re-
sources. In other words, such agents have bounded rationality. Agents will
have evolved this way, since the correct solution is, by definition, the one
that most benefits the agent, and agents whose mechanism failed to make
the correct choices would presumably have died out long ago.

7 To Conclude

There is no doubt that AI research has made huge strides, both in helping
us to understand how the human mind works and in constructing ever better
machines. Yet, for all the progress, its foundations remain shaky at best. This
paper has been an attempt to build solid foundations by returning to first
principles and adopting an engineering approach to the problem. The result is
hopefully a much clearer and simpler picture of how agents may function. Ex-
amination of the possible ways in which agents could communicate, store and
recognise messages, led to a better understanding of the processes involved,
and so provided a principled distinction between the symbolic and connec-
tionist paradigms. Since both approaches can achieve the same function it is
clear that they are genuine alternatives. In other words, an intelligent agent
could equally well be designed using either symbolic or connectionist tech-
niques. To use the analogy of house building, the designer is essentially free
to build above or below ground, the choice being irrelevant as regards the
function–though of course other tangential considerations may tip the balance
one way or the other. Likewise, then, the representations and processing in
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an agent may be continuous or discrete, serial or parallel, symbolic or connec-
tionist (or any combination thereof). And, just as a house could be designed
and built in a variety of materials, so too could an agent–both symbolic and
connectionist "faces" being computational and so multiply-realisable.

Given this, what of the PSSH; is it wrong to claim that a symbol system
is necessary and sufficient for intelligent action? Actually, no. The PSSH is
concerned with the higher functional level, not with the design and implemen-
tation. All it says is that such and such abilities are needed (Nilsson, 2007).
The problem has been that those requirements have often been conflated with
the design/implementation, since there seemed to be no means to create a
symbol system, other than the "copy" (token) one. Now we can see that the
"link" option is a real alternative, perhaps we need different vocabulary for
the PSSH level so as to clearly distinguish it from the design/implementation
level.

And what of the newer contenders—embodied, embedded, and extended
theories of cognition—that reject representations, emphasise the role of the
agent’s body and/or their situation within the world? Most of these research
programs primarily aim at controlling bodily movements, usually by modeling
the agent and its environment, and analysing the coupled system in dynam-
ical terms. For observers this is fine, but it doesn’t explain how an agent
can come to know the “outside” world, which is exactly what makes cogni-
tion difficult and intelligence necessary! An alternative, simpler approach, has
been to avoid having the agent build detailed internal models of the world at
all, and instead have them “look-up” the information from the environment
as needed; “the world as its own model.” These, however, are all relatively
low-level functions and, as we saw earlier, they simply cannot account for
the full range of human intelligent behaviour. At the other end of the spec-
trum are approaches, such as situated cognition, which promise to somehow
combine low-level behaviour with higher cognitive levels. Here, the focus has
been on language and how we interact with other agents in a socio-cultural
environment. Much of this behaviour is undoubtedly a consequence of cer-
tain incidental biological needs (for nourishment, warmth, sex, etc.), and/or
limitations (of memory and processing speed—leading to extended mind like
interactions), and so not a function of cognition per se. Hopefully, the analy-
sis presented here provides an outline of how a computational mechanism (an
agent), with a body, operating in a socio-cultural environment, may actually
come into existence and function.

To date, most AI work has concentrated on the symbolic paradigm or on
connectionist networks that tended to use distributed representations, had
little or no feedback mechanism to handle sequence, and required thousands of
epochs to train. Consideration of the requirements level has shown that there
is a more realistic design alternative for the "link" (connectionist) form. This
is important since it would appear Nature has adopted this "link" scheme for
use in our brains. Further work is needed to fully expound the mechanism and
its implications, but, as we saw above, it does seem to offer clues regarding
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some of the most intractable problems AI has faced, including intentionality,
feelings, and even consciousness, as well as deeper philosophical conundrums
regarding the ontology of the world, our place in it, and the notion of truth
(Davenport, 2009; Floridi, 2011).

At the very least, I hope this paper has presented the core concepts and ar-
guments in a clear and understandable form, and that it affords a framework
that will help others put the vast literature into some sort of perspective.
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The Info-computational Nature of  
Morphological Computing  

Gordana Dodig-Crnkovic* 

Abstract. Morphological computing emerged recently as an approach in robotics 
aimed at saving robots computational and other resources by utilizing physical 
properties of the robotic body to automatically produce and control behavior. The 
idea is that the morphology of an agent (a living organism or a machine) con-
strains its possible interactions with the environment as well as its development, 
including its growth and reconfiguration. The nature of morphological computing 
becomes especially apparent in the info-computational framework, which com-
bines informational structural realism (the idea that the world for an agent is an in-
formational structure) with natural computationalism (the view that all of nature 
forms a network of computational processes). Info-computationalism describes 
morphological computation as a process of continuous self-structuring of informa-
tion and shaping of both interactions and informational structures. This article ar-
gues that natural computation/morphological computation is a computational 
model of physical reality, and not just a metaphor or analogy, as it provides a basis 
for computational framing, parameter studies, optimizations and simulations – all 
of which go far beyond metaphor or analogy. 

1   Introduction 

In recent years, morphological computing emerged as a new idea in robotics, 
(Pfeifer 2011), (Pfeifer and Iida 2005), (Pfeifer and Gomez 2009) (Paul 2004). 
This presents a fundamental change compared with traditional robotics which, 
based on the Cartesian tradition, treated the body/machine and its control (com-
puter) as completely independent elements of a robot. However, it has become in-
creasingly evident that embodiment itself is essential for cognition, intelligence 
and generation of behavior. In a most profound sense, embodiment is vital be-
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cause cognition (and consequently intelligent behavior) results from the interac-
tion of the brain, body, and environment. (Pfeifer 2011) Instead of specifically 
controlling each movement of a robot, one can instead use morphological features 
of a body to automatically create motion. Here we can learn from specific struc-
tures of biological life forms and materials found in nature which have evolved 
through optimization of their function in the environment.  

During the process of its development, based on its DNA code, the body of a 
living organism is created through morphogenesis, which governs the formation of 
life over a short timescale, from a single cell to a multi-cellular organism, through 
cell division and organization of cells into tissues, tissues into organs, organs into 
organ systems, and organ systems into the whole organism. Morphogenesis (from 
the Greek “generation of the shape"), is the biological process that causes an or-
ganism to develop its shape. 

Over a long timescale, morphological computing governs the evolution of spe-
cies. From an evolutionary perspective it is crucial that the environment provides 
the physical source of the biological body of an organism as well as a source of 
energy and matter to enable its metabolism. The nervous system and brain of an 
organism evolve gradually through the interaction of a living agent with its envi-
ronment. This process of mutual shaping is a result of information self-structuring. 
Here, both the physical environment and the physical body of an agent can at all 
times be described by their informational structure1. Physical laws govern funda-
mental computational processes which express changes of informational struc-
tures. (Dodig Crnkovic 2008) 

The environment provides a variety of inputs in the form of both information 
and matter-energy, where the difference between information and matter-energy is 
not in the kind, but in the type of use the organism makes of it. As there is no in-
formation without representation, all information is carried by some physical car-
rier (light, sound, radio-waves, chemical molecules able to trigger smell receptors, 
etc.). The same object can be used by an organism as a source of information and 
as a source of nourishment/matter/energy. A single type of signal, such as light, 
may be used by an organism both as information necessary for orientation in the 
environment, and for the photosynthetic production of energy. Thus, the question 
of what will be used 'only' as information and what will be used as a source of 
food/ energy depends on the nature of the organism. In general, the simpler the or-
ganism, the simpler the information structures of its body, the simpler the informa-
tion carriers it relies on, and the simpler its interactions with the environment. 

The environment is a resource, but at the same time it also imposes constraints 
which limit an agent’s possibilities. In an agent that can be described as a complex 
informational structure, constraints imposed by the environment drive the time 

                                                           
1 Here is the definition by John Daintith, A Dictionary of Computing (2004) 

http://www.encyclopedia.com/doc/1O11-datastructure.html 

Data structure (information structure) An aspect of data type expressing the nature of 
values that are composite, i.e. not atoms. The non-atomic values have constituent parts 
(which need not themselves be atoms), and the data structure expresses how constituents 
may be combined to form a compound value or selected from a compound value. 
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development (computation) of its structures, and thus even its shape and behavior, 
to specific trajectories.  

This relationship between an agent and its environment is called structural 
coupling by (Maturana & Varela 1980) and is described by (Quick and Dauten-
hahn 1999) as “non-destructive perturbations between a system and its environ-
ment, each having an effect on the dynamical trajectory of the other, and this in 
turn affecting the generation of and responses to subsequent perturbations.”  

This mutual coupling between living systems and the environment can be fol-
lowed on the geological time scale, through the development of the first life on 
earth. It is believed that the first, most primitive photosynthetic organisms contri-
buted to the change of the environment and produced oxygen and other  
compounds enabling life on earth. For example, Catling et al. (2001) explain how 
photosynthesis splits water into O2 and H, and methanogenesis transfers the H into 
CH4. The release of hydrogen after CH4 photolysis therefore causes a net gain of 
oxygen. This process may help explain how the earth's surface environment be-
came successively and irreversibly oxidized, facilitating life on earth.  

When talking about living beings in general, there are continuous, mutually 
shaping interactions between organisms and their environment, where the body of 
some organisms evolved a nervous system and a brain as control mechanisms. 
Clark (1997) p. 163 talks about "the presence of continuous, mutually modulatory 
influences linking brain, body and world."  

2   Morphological Computing 

In morphological computing, the modelling of an agent’s behavior (such as loco-
motion and sensory-motor coordination) proceeds by abstracting the principles via 
information self-structuring and sensory-motor coordination, (Matsushita et al. 
2005), (Lungarella et al. 2005) (Lungarella and Sporns 2005) (Pfeifer, Lungarella 
and Iida 2007). Brain control is decentralized based on sensory-motor coordina-
tion through interaction with the environment. Through embodied interaction with 
the environment, in particular through sensory-motor coordination, information 
structure is induced in the sensory data, thus facilitating perception, learning and 
categorization. The same principles of morphological computing (physical com-
puting) and data self-organization apply to biology and robotics. 

Morphology is the central idea in the understanding of the connection between 
computation and information. It should be noted that material also represents mor-
phology, but on a more basic level of organization – the arrangements of molecu-
lar and atomic structures. What appears as a form on a more fundamental level of 
organization (e.g. an arrangement of atoms), represents 'matter' as a higher-order 
phenomenon (e.g. a molecule). Isomers show how morphological forms are criti-
cal in interaction processes such as pharmacology, where the matching of a 'drug' 
to a 'receptor' is only possible if the forms are correct. The same is true for 
processes involving molecules in a living cell. 

Info-computational naturalism (Dodig Crnkovic 2009) describes nature as in-
formational structure – a succession of levels of organization of information. Mor-
phological computing on that informational structure leads to new informational 
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structures via processes of self-organization of information. Evolution itself is a 
process of morphological computation on structures of organisms over a long time 
scale. It will be instructive within the info-computational framework to study in 
detail processes of self organization of information in an agent (as well as in a 
population of agents) able to re-structure themselves through interactions with  
the environment as a result of morphological (morphogenetic) computation. 
Kauffman (1993) correctly identifies the central role of self-organization in the 
process of evolution and development. The order within a living organism grows 
by self-organization, which is lead by basic laws of physics. 

As an example of morphological computing, in botany phyllotaxis is the ar-
rangement of leaves on a plant stem (from ancient Greek phýllon "leaf" and táxis 
"arrangement"). 

 “A specific crystalline order, involving the Fibonacci series, had until now on-
ly been observed in plants (phyllotaxis). Here, these patterns are obtained both in 
a physics laboratory experiment and in a numerical simulation. They arise from 
self-organization in an iterative process. They are selected depending on only one 
parameter describing the successive appearance of new elements, and on initial 
conditions. The ordering is explained as due to the system’s trend to avoid ration-
al (periodic) organization, thus leading to a convergence towards the golden 
mean.” Douady and Couder (1992) 

Morphological computing is information (re)structuring through computational 
processes that follow/implement physical laws. It is physical computing or natural 
computing in which physical objects perform computation. Symbol manipulation, 
in this case, is physical object manipulation. 

3   Information as a Fabric of Reality 

“Information is the difference that makes a difference. “ (Bateson, 1972) 

More specifically, Bateson’s difference is the difference in the world that makes 
the difference for an agent. Here the world also includes agents themselves. As an 
example, take the visual field of a microscope/telescope: A difference that makes 
a difference for an agent who can see (visible) light appears when she/he/it detects 
an object in the visual field. What is observed presents a difference that makes the 
difference for that agent. For another agent who may see only ultra-violet radia-
tion, the visible part of the spectrum might not bring any difference at all. So the 
difference that makes a difference for an agent depends on what the agent is able 
to detect or perceive. Nowadays, with the help of scientific instruments, we see 
much more than ever before, which is yet further enhanced by visualization tech-
niques that can graphically represent any kind of data.  

A system of differences that make a difference (information structures that 
build information architecture), observed and memorized, represents the fabric of 
reality for an agent. Informational Structural Realism (Floridi, 2008) (Sayre, 1976) 
argues exactly that: information is the fabric of reality. Reality consists of infor-
mational structures organized on different levels of abstraction/resolution. A simi-
lar view is defended by (Ladyman et al. 2007). Dodig Crnkovic (2009) identifies 
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this fabric of reality (Kantian Ding an sich) as potential information and makes the 
distinction between it and actual information for an agent. Potential information 
for an agent is all that exists as not yet actualized for an agent, and it becomes in-
formation through interactions with an agent for whom it makes a difference. 

Informational structures of the world constantly change on all levels of organi-
zation, so the knowledge of structures is only half the story. The other half is the 
knowledge of processes – information dynamics.  

4   Computation. The Computing Universe: 
Pancomputationalism 

Konrad Zuse was the first to suggest (in 1967) that the physical behavior of the 
entire universe is being computed on the basic level, possibly on cellular automa-
ta, by the universe itself, which he referred to as "Rechnender Raum" or Compu-
ting Space/Cosmos.  

The subsequently developed Naturalist computationalism/ pancomputational-
ism (Zuse, 1969) (Fredkin, 1992) (Wolfram, 2002), (Chaitin, 2007), (Lloyd, 2006) 
takes the universe to be a system that constantly computes its own next state. 
Computation is generally defined as information processing, see (Burgin, 2005)  

5   Info-computationalism 

Information and computation are two interrelated and mutually defining pheno-
mena – there is no computation without information (computation understood as 
information processing), and vice versa, there is no information without computa-
tion (information as a result of computational processes). (Dodig Crnkovic 2006) 
Being interconnected, information is studied as a structure, while computation 
presents a process on an informational structure. In order to learn about founda-
tions of information, we must also study computation. In (Dodig-Crnkovic, 2011) 
the dynamics of information is defined in general as natural computation.  

6   Information Self-structuring (Self-organization) 

The embodiment of an agent is both the cause and the result of its interactions 
with the environment. The ability to process and to structure information depends 
fundamentally on the agent’s morphology. This is the case for all biological 
agents, from the simplest to the most complex. According to (Lungarella et al. 
2005), “embodied agents that are dynamically coupled to the environment, active-
ly shape their sensory experience by structuring sensory data (…).” Because of the 
morphology which enables dynamic coupling with the environment, the agent se-
lects environmental information which undergoes the process of self-structuring 
(by organizing the statistics of sensory input) in the persistent loops connecting 
sensory and motor activity. Through repeated processing of typically occurring 
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signals, agents get adapted to the statistical structure of the environment. In (Lun-
garella & Sporns, 2004) it is argued that: 

” in order to simplify neural computations, natural systems are optimized, at evo-
lutionary, developmental and behavioral time scales, to structure their sensory in-
put through self-produced coordinated motor activity. Such regularities in the 
multimodal sensory data relayed to the brain are critical for enabling appropriate 
developmental processes, perceptual categorization, adaptation, and learning.” 
(Lungarella 2004) 

In short, information self-structuring means that agents actively shape their sen-
sory inputs by interactions with the environment. Lungarella and Sporns use  
entropy as a general information-theoretic functional that measures the average 
uncertainty (or information) of a variable in order to quantify the informational 
structure in sensorimotor data sets. Entropy is defined as: ܪሺܺሻ ൌ  െ  ሻݔሺ ሻ logݔሺ  ሺܺሻܪ

where p(x) is the first order probability density function.  
Another useful information-theoretical measure is mutual information (Lunga-

rella & Sporns, 2004). In terms of probability density functions, the mutual infor-
mation of two discrete variables, X and Y, is be expressed as:  ܯሺܺ, ܻሻ ൌ  െ   ,ݔሺ ሻݔሺሻ log ሾݕ ,ݔሺ / ሻݕሺ  ሻሿݕ
thus measuring the deviation from the statistical dependence of two variables.  

In sum, statistical methods are used in order to analyze data self-structuring, 
which appears as a result of the dynamical coupling between the (embodied) agent 
and the environment. (Lungarella & Sporns, 2004) 

7   Cognition as Restructuring of an Agent in the Interaction 
with the Environment 

As a result of evolution, increasingly complex living organisms arise that are able 
to survive and adapt to their environment. This means that they are able to register 
input (data) from the environment, to structure it into information, and, in more 
complex organisms, to structure information into knowledge. The evolutionary 
advantage of using structured, component-based approaches such as data – infor-
mation – knowledge is the improved response-time and the efficiency of cognitive 
processes of an organism. 

All cognition is embodied cognition in all living beings – microorganisms as 
well as humans. In more complex cognitive agents, knowledge is built not only as 
a direct reaction to external input information, but also on internal intentional in-
formation processes governed by choices, dependent on value systems stored and 
organized in the agent’s memory as 'implemented' in the agent’s body. 



The Info-computational Nature of Morphological Computing 65
 

Information and its processing are essential structural and dynamic elements 
which characterize the structuring of input data (data → information → know-
ledge) by an interactive computational process going on in the agent during the 
adaptive interplay with the environment. 

There is a continuum of morphological development from the automaton-like 
behaviors of the simplest living structures to the elaborate interplay between body, 
nervous system and brain, and the environment of most complex life forms. Cog-
nition thus proceeds through the restructuring of an agent in its interaction with 
the environment and this restructuring can be identified as morphological  
computing. 

8   Morphogenesis as Computation (Information Processing).  
Turing's Reaction-Diffusion Model of Morphogenesis 

Morphology (Greek morphê - shape) is a theory of the formative principles of a 
structure.  

Morphogenesis is a study of the creation of shape during the development of an 
organism. It is one of the following four fundamental, interconnected classes of 
events in the development: Patterning - the setting up of the positions of future 
events across space at different scales; Regulation of timing - the 'clock' mechan-
isms and Cell differentiation: changes in a set of expressed genes (molecular phe-
notype) of a cell. 

Interesting to note is that in 1952 Alan Turing wrote a paper proposing a chem-
ical model as the basis of the development of biological patterns such as the spots 
and stripes on animal skin, (Turing 1952).  

 “Patterns resulting from the sole interplay between reaction and diffusion are 
probably involved in certain stages of morphogenesis in biological systems, as in-
itially proposed by Alan Turing. Self-organization phenomena of this type can on-
ly develop in nonlinear systems (i.e. involving positive and negative feedback 
loops) maintained far from equilibrium.” (Dulos et al. 1996) 

Turing did not originally claim that the physical system producing patterns  
actually performs computation through morphogenesis. Nevertheless, from the 
perspective of info-computationalism (Dodig Crnkovic 2009) we can argue that 
morphogenesis is a process of morphological computing. Physical process, even 
though not 'computational' in the traditional sense, presents natural (unconven-
tional), physical, morphological computation. An essential element in this process 
is the interplay between the informational structure and the computational process 
– information self-structuring (including information integration), both synchronic 
and diachronic, proceeding through different scales of time and space. The process 
of computation implements (represents) physical laws which act on informational 
structures. Through the process of computation, structures change their forms. 

All of computation on some level of abstraction is morphological computation 
– a form-changing/form-generating process. 
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9   Info-Computationalism and Morphological Computing Are 
Models of Computation and Not Just Metaphors 

“Perhaps every science must start with metaphor and end with algebra – and per-
haps without the metaphor there would never have been an algebra.” (Black, 
1962) p.242 

According to the dictionary definition, metaphor is a figure of speech in which a 
term or phrase is applied to represent something else. It uses an image, story or 
tangible thing to represent a quality or an idea.  

In the case of morphological computing, some might claim that morphological 
computing is just a metaphor, or a figure of speech, which would mean that mor-
phogenesis can metaphorically be described as computing, for example, while in 
fact it is something else. 

On the other hand, analogy (from Greek 'αναλογία' – 'proportion') is a cognitive 
process of transferring information or meaning from one particular subject to 
another particular subject, and a linguistic expression corresponding to such a 
process. An analogy does not make identification, which is the property of a me-
taphor. It just establishes similarity of relationships. 

If morphological computing were just an analogy, it would establish only a si-
milarity of some relationships, which is definitely not all it does. 

Unlike metaphors and analogies, models are not primarily linguistic con-
structs. They have substantial non-linguistic, interactive spatio-temporal and vis-
ual qualities. Models are cognitive tools often used not only for description but 
also for prediction and control and interactive studies of modeled phenomena. 
Black (1962) noticed the line of development from metaphor to computational 
model: 

“Models, however, require a greater degree of structural identity, or isomor-
phism, so that assertions made about the secondary domain can yield insight into 
the original field of interest, and usually the properties of the second field are bet-
ter known than those of their intended field of application. Mathematical models 
are paradigmatic examples for science, and in physics and engineering, at least, 
their primary function is conventionally taken to be the enabling of predictions 
and the guiding of experimental research. Kant went so far as to identify science 
with mathematization...” (Black, 1962) p.242 

The process of modeling, designing and creating robots that are more life-like in 
their morphological properties, can both advance our understanding of biological 
life and improve embodied and embedded cognition and intelligence in artificial 
agents. Morphological computing is a model of computing, i.e. data/information 
processing. It is a type of natural (physical) computing, and as a model it has both 
important practical and theoretical implications. 
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Limits of Computational Explanation  
of Cognition 

Marcin Miłkowski* 

Abstract. In this chapter, I argue that some aspects of cognitive phenomena can-
not be explained computationally. In the first part, I sketch a mechanistic account 
of computational explanation that spans multiple levels of organization of cogni-
tive systems. In the second part, I turn my attention to what cannot be explained 
about cognitive systems in this way. I argue that information-processing mechan-
isms are indispensable in explanations of cognitive phenomena, and this vindi-
cates the computational explanation of cognition. At the same time, it has to be 
supplemented with other explanations to make the mechanistic explanation com-
plete, and that naturally leads to explanatory pluralism in cognitive science. The 
price to pay for pluralism, however, is the abandonment of the traditional autono-
my thesis asserting that cognition is independent of implementation details. 

1   Understanding Computational Cognitive Science 

From the very beginning, research on Artificial Intelligence has had two goals: 
create artificial cognitive systems and explain the behavior of natural cognitive 
systems in the same manner the artificial systems are explained. The second goal 
was based on the assumption that artificial systems are good models of natural 
ones because they share the relevant causal organization that underlies their beha-
vior (for an early expression of this view, see Craik 1943). Yet early AI systems 
were usually created without much prior theoretical analysis, and the researchers’ 
enthusiasm for them could not be easily justified, especially in areas where human 
cognitive behavior seemed much more flexible than simple rule-driven processing 
of symbols. The computational approach to cognition was criticized precisely for 
this reason (Dreyfus 1972). 

All similar criticisms notwithstanding, a broadly conceived computational ex-
planation of cognitive systems has remained the core of cognitive science, also in 
the enactive research program, and even dynamical accounts of cognition share 
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most important assumptions of computationalism. Computational models abound 
in neuroscience, even if they barely resemble the early symbolic simulations. Al-
so, contra some critics of traditional cognitive science, like Gomila (2008), I do 
not think that the success of symbolic AI was meager. Today’s mundane technol-
ogies, such as web search, machine translation, speech recognition and OCR, rely, 
for the most part, on symbolic methods. At the same time, there are successful 
symbolic explanations of human cognitive abilities that a philosopher of cognitive 
science should be in a position to understand. 

In the first part of this chapter, I sketch a mechanistic account of computational 
explanation that spans multiple levels of organization of cognitive systems, which 
is, in my opinion, descriptively and normatively adequate for most current re-
search in cognitive science. In the second part, I turn my attention to what is  
impossible to explain about cognitive systems in this way, and remind why expla-
nations of cognition involve information-processing. I conclude by arguing that 
explanations of cognition should be pluralistic. 

2   Mechanistic Account of Computational Explanation 

In philosophy of cognitive science, one of the most widely endorsed views is neo-
mechanism (Machamer, Darden & Craver 2000, Craver 2007, Bechtel 2008).  
According to this view, to explain a cognitive phenomenon is to explain the under-
lying cognitive mechanism. Mechanistic explanation is a species of causal expla-
nation, and explaining a mechanism involves the discovery of its causal structure. 
While mechanisms are defined in various ways by different authors, the core idea 
is that they are organized systems, comprising causally relevant component parts 
and operations (or activities) thereof. What is important is that parts of the me-
chanism interact and their orchestrated operation contributes to the capacity of the 
mechanism. Note that in this theory of explanation, a mechanism is always un-
derstood as a mechanism of something, i.e., having some particular capacity. An 
explanation of the capacity in question is achieved by specifying the mechanism 
that causally contributes to this capacity. If the capacity is constituted by a com-
plex, hierarchical organization, then the explanation must be constitutive and in-
volve multiple levels. 

The neo-mechanistic framework has also been applied to computational expla-
nation (Piccinini 2007, Miłkowski forthcoming). Piccinini focused on digital ef-
fective computation and has only recently admitted the need to accommodate un-
conventional models, all under the umbrella of “generic computation” (Piccinini 
& Scarantino 2010). His general scheme of describing computational models is 
based on abstract string rewriting: computation is construed as rewriting strings of 
digits (Piccinini 2007, 501). 

It is not obvious how to extend this view to cover generic computation. Yet 
computational cognitive science and neuroscience do refer to analog computation 
(for a recent example of a hybrid digital-analog architecture, see O’Reilly 2006). 
A descriptively adequate account of computational explanation in cognitive 
science should be able to make sense of such references, without legislating a pri-
ori that computation is limited to the processes that can be modeled using partial 
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recursive functions. In other words, I think that descriptive adequacy requires that 
we endorse transparent computationalism (Chrisley 2000). If it turns out that 
hypercomputation in neural networks is not just a theoretical possibility (Siegel-
mann 1994), we had better be prepared to understand how it is implemented. This, 
however, means that our account will have to rely on something else than Piccini-
ni’s digits. 

Computation is standardly understood as information-processing, so the notion 
of information can be used to define what is crucial about models of computation 
for the account of implementation: a computational process is one that transforms 
the stream of information it gets as input to produce some stream of information at 
the output. During the transformation, the process may also appeal to information 
that is part of the very same process (internal states of the computational process). 
Information may, although need not, be digital: that is, there is only a finite, de-
numerable set of states that the information vehicle takes and that the computa-
tional process is able to recognize, as well as produce at its output; a bit of digital 
information construed in this way is equivalent to Piccinini’s notion of digit. (In 
analog processing, the range of values recognized is restricted, but continuous, 
i.e., infinite.) By “information” I mean Shannon, quantitative information: the 
vehicle must be capable of taking at least two different states to be counted as in-
formation-bearing (otherwise it has no variability, so there is uncertainty as to the 
state it will assume). 

Understanding computation as information-processing has several advantages 
over the more traditional accounts. Let me briefly compare it with two of them, 
which seem the most popular in philosophy of cognitive science: (1) the formal 
symbol manipulation (FSM) account and (2) the semantic account. 

The FSM account (Fodor 1975, Pylyshyn 1984) says, roughly, that computing 
is manipulation of formal symbols. There are two notions that need to be un-
packed. First, it is not at all clear what it is for symbols to be formal (Cantwell 
Smith 2002); second, the notion of symbol is by no means obvious either. 

The problem with formality is that the FSM thesis lacks proper quantification: 
is it the claim that all computation involves only formal symbols, or that all com-
putation involves symbols that are not all non-formal? I believe the latter is the 
most trouble-free rendition of the formality claim: it would follow that all symbols 
may but need not be formal. Alas, this is not what Fodor seems to have presup-
posed in some of his writings, where he claimed that all symbols have to be  
formal (Fodor 1980). This, however, would inevitably lead to methodological so-
lipsism. But even Fodor does not espouse this view today. For this reason, I read 
the FSM view as asserting that symbols involved in computation need not be non-
formal, which is a much weaker thesis, as it allows for both purely formal symbols 
non-formal ones. 

But how should we understand “formality”? My reading is that formal symbols 
do not refer to anything. So, to sum up, all computation is manipulation of sym-
bols that need not refer to anything. If they refer, it is not a problem (formal sym-
bols that refer are impossible on other readings, which lead to paradoxes that 
Cantwell Smith 2002 analyzes in detail). 
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What are symbols on the FSM account? There are several systematically con-
fused meanings of “symbol” in cognitive science. For example, if “symbol” is a 
conventional sign that roughly corresponds to a linguistic concept, then connec-
tionist networks will not count as computational. Worse still, even Turing ma-
chines that operate on natural numbers would not come out as computational ei-
ther. So this reading of “symbol” is obviously wrong, as the FSM thesis would be 
denying that Turing machines compute. Instead of reviewing other meanings of 
“symbol” (for a review, see Miłkowski, forthcoming, chapter 4), I suggest that the 
FSM approach appeals to the notion of symbol as it is used in computability 
theory. This is how Cutland uses it when introducing a Turing machine M: 

At any given time each square of the tape is either blank or contains a single symbol 
from a fixed finite list of symbols s

1
, s

2
,..., s

n
, the alphabet of M (Cutland 1980: 53). 

This interpretation is by far the least troublesome. But it transpires immediately 
that this kind of “formal symbol” is precisely what I called “information” (it is 
unclear whether, on the FSM theory, the alphabet of symbols computed was sup-
posed to be a dense set; if not, then “formal symbol” is what Piccinini meant by 
his notion of digit, and what I called “digital information”). So the FSM view, on 
this reading, is equivalent to my view of computation as information-processing. 
On other readings, in contrast, it leads to inexorable difficulties (Cantwell Smith 
2002). Note, however, that the FSM theory does not offer any account of imple-
mentation either. 

The second interpretation of computation, qua semantic notion, is also ascribed 
to Pylyshyn and Fodor, and to Cantwell Smith, too. It is popular among philoso-
phers (and is almost completely – and rightly so! – ignored in computer science). 
True, Fodor wrote “no computation without representation” (Fodor 1975: 34), yet 
the notion of representation is also deeply troubling in this context. The argument 
Fodor gives is that computation presupposes a medium for representing the struc-
tures over which computational operations are defined. But it is far-fetched to 
suppose that these representations refer to anything. In fact, if they always refer, 
then the symbol-grounding problem (Harnad 1990) makes no sense: there cannot 
be symbols in computers that do not refer. Alas, nowhere have I found an argu-
ment that computation must operate on non-empty representations, and counterex-
amples abound. It is easy to point to programs or structures that seem to refer to 
nothing whatsoever. Take this piece of Pascal code: 

program do_nothing; 
 begin 
 end. 

It is a correct specification of a program that does nothing. Similarly, a connec-
tionist network with two interconnected nodes such that either node gets activated 
whenever the other one is seems to do some computation, albeit a trivial one. 
What is the referent, again? 

This is why I suggest, like Fresco (2010) and Piccinini (2006), that it is not a 
good idea to wait for an uncontroversial elucidation of semantic notions before we 
can define computation. Let Cantwell Smith (2002) insist that to understand com-
putation, we need to build semantic theory first–I, for one, am not holding my 
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breath: plausibly, a viable proposal showing that computation always involves 
representation of distal objects is not forthcoming. If, on the other hand, you hap-
pen to think that representation need not refer, then your use of “representation” is 
deflationary: representation is nothing but a formal symbol as explicated above. 

As far as I can see, my account explicates the basic intuitions of philosophers in 
an unproblematic fashion and without contradicting transparent computationalism. 
So let me elaborate further. In cognitive science, computational explanations rely 
on information-processing mechanisms. Computational explanations are a kind of 
constitutive mechanistic explanations: they explain how the computational capaci-
ty of a mechanism is generated by the orchestrated operation of its component 
parts. 

Constitutive mechanistic explanations involve at least three levels of organiza-
tion: a constitutive (-1) level, which is the lowest level in the given analysis; an 
isolated (0) level, at which the parts of the mechanism are specified along with 
their interactions (activities or operations); and the contextual (+1) level, at which 
the function the mechanism performs is seen in a broader context (for example, 
the context for an embedded computer might be a story about how it controls a 
missile). In contradistinction to how Marr (1982) or Dennett (1987) understand 
them, levels here are not just levels of abstraction; they are levels of composition 
(see Craver 2007, chapter 5 for an introduction to the mechanistic account of le-
vels, and Wimsatt 2007, chapter 10 for a discussion of levels of organization in 
general; see also Miłkowski, forthcoming, chapter 3). Note also that the constitu-
tive level of one mechanism might naturally become a contextual level for another 
mechanistic explanation when mechanisms are nested. 

To say that a mechanism implements a computation is to claim that the causal 
organization of the mechanism is such that the input and output information 
streams are causally linked and that this link, along with the specific structure of 
information processing, is completely described. (Note that the link might be quite 
convoluted and cyclical; the mechanism might be also a distributed or an ephe-
meral entity.) To describe information-processing one usually employs standard 
models of computation used in computer science (by a “model of computation”, I 
mean a formal specification of computation, such as Markov algorithms, Turing 
machines, von Neumann computers, Pascal programs etc.). But, in order to be 
explanatorily relevant and descriptively accurate, the model chosen has to be me-
chanistically adequate. This is why the description of a mechanistically adequate 
model of computation comprises two parts: (1) an abstract specification of a com-
putation, which should include all the causally relevant variables; (2) a complete 
blueprint of the mechanism on three levels of its organization. In mechanistic ex-
planation, there are no mechanisms as such; there are only mechanisms of some-
thing: and here that something is (1). By providing the blueprint of the system, we 
explain its capacity, or competence, abstractly specified in (1). 

This concludes my brief summary of computational explanation via mechan-
isms (for more detail, including an account of how to delineate boundaries of me-
chanisms, see Miłkowski, forthcoming). Let me now show how this helps to  
discover its limits. 
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3   From Levels to Limits 

Note that a constitutive mechanistic explanation of a phenomenon does not ex-
plain the bottom level of a mechanism, i.e. its constitutive parts and their organiza-
tion. There might be an explanation of why they are organized this way and not 
another, and why they are what they are, but this is not a part of the same explana-
tion. Most importantly in this context, this means that one cannot explain the  
makeup of parts that constitute a computational system. An example will help 
elucidate this point. I’m using LanguageTool, a Java application to proofread a 
document in English. The algorithm I implemented in Java on my laptop does not 
explain why the integrated circuit performs instructions as specified in the ma-
chine code for Intel processors, as I cannot predict these electronic processes at 
all. When knowing that Java code is being executed, I could only predict a certain, 
high-level pattern of these processes, but not the particular detail, as Java code 
does not specify its own electronic-code level. For this reason, I find the talk about 
“top-down” explanation of systems with their systemic computational capacities 
(Rusanen & Lappi 2007) mildly misleading. All you can explain and predict by 
referring to Java code is a general tendency of the system, and not its constitution. 
This is not a “top-down” explanation: “down” is missing altogether, so it is just a 
“top” explanation (which is mechanistic all right, but, like an explanation of the 
movement of billiard balls, remains limited to a single level of the mechanism). 

Even more interestingly, the Java code does not explain how the CPU interprets 
machine code instructions, which is, arguably, the level of composition above the 
level of electronics. The CPU level is computational in its own right, but it is not 
the target of an explanation which has Java code as its isolated level. There is no 
explanatory symmetry between the levels: it is the lower (-1) level that can explain 
the isolated level, and not vice versa. 

Note also that the contextual level of a computer is not explained computation-
ally either. A description of how a computer “behaves” in its environment is 
couched in generic causal terms, not in terms of information-processing. Obvious-
ly, one computational mechanism can be a component of a greater computational 
system, in which case the former is described at the constitutive of level of the 
latter, while the latter serves as the contextual level for the former. Integrating 
such computational mechanisms may consist in specifying both of them in compu-
tational terms; however, the uppermost level of the larger mechanism, as well as 
the constitutive level the submechanism, will still remain non-computational in 
character. 

For example, if I put my laptop computer on wet grass, then the behavior of the 
laptop might be influenced by the environment it is in (for example, by leading to 
a short circuit). This influence, however, will not be computational at all, and you 
cannot explain it computationally. 

By contrast, the isolated level of a mental mechanism is computational: one can 
specify it solely in terms of information-processing, unless one also wants to de-
scribe its interaction with the environment. Moreover, the organization, activities 
and interactions of the components of computational structure, as represented by a 
mechanistically adequate model of a given computation, are also described in 
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computational terms. The description is correct just in case all the components of 
a mechanistically adequate model have counterparts in a generic causal model of 
experimental data (Piccinini & Craver 2011). An explanation will be complete 
only if the objects and interactions at the constitutive level can be “bottomed out”, 
or explained in non-computational terms.  

This will also be true of highly complex hierarchies, where a computational 
submechanism is embedded in a larger mechanism, and this larger one in another. 
A submechanism contributes to an explanation of the behavior of a larger mechan-
ism, and the explanation might be in terms of a computation, but the nesting of 
computers eventually bottoms out in non-computational mechanisms. Obviously, 
pancomputationalists, who claim that all physical reality is computational, would 
immediately deny the latter claim. However, the bottoming-out principle of me-
chanistic explanation does not render pancomputationalism false a priori. It simply 
says that a phenomenon has to be explained as constituted by some other pheno-
menon than itself. For a pancomputationalist, it will mean that there must be a 
distinction between lower-level, or basic computations, and the higher level ones 
(for a suggestion about how a pancomputationalist might do this, see Miłkowski 
2007). Should pancomputationalism turn out to be unable to fulfill this condition, 
it will be explanatorily vacuous. 

This complex vision is far messier than the neat machine functionalism of the 
past. However, a complex hierarchical architecture, including certain cyclical rela-
tionships, is important in biological systems, and this is precisely what human 
cognitive systems are. 

That the scope of computational explanation is the isolated level of mechanisms 
and other levels are explained in a different way is easily seen if we turn to real 
explanatory models from cognitive science. Let me take one classical example 
from the symbolic camp – Newell and Simon’s model of cryptarithmetic (Newell 
& Simon 1972), and a modern one from cognitive robotics – Webb’s robotic 
cricket (Webb 1995; Lund et al. 1997; see Webb 2008 for a review). In both cases, 
the differences between symbolic and embodied models notwithstanding, the lim-
its of computational explanation are clearly visible. The latter example is of spe-
cial interest, as robotic crickets are cited as an exemplar of extended and embodied 
cognition (Clark 2001: 104-6). 

In a study on cryptarithmetic problems, such as finding which digits correspond 
to letters in equations of the form SEND + MORE = MONEY or DONALD + 
GERALD = ROBERT, Newell and Simon explain the subjects’ performance by 
providing a description of an information-processing system (Newell & Simon 
1972), formulated as a computer program capable of solving the problem in the 
same way as the subject. The proposed explanation focuses on individual perfor-
mance, and should be sufficiently detailed for an interpreter of the description to 
be able to perform the task as well (Newell & Simon 1972: 11). In effect, their 
account accounts for the individual performance of particular agents. The comput-
er simulation, realized as a production system, is validated by recourse to empiri-
cal evidence: verbal protocols (the match of the model is around 80%) and eye-
tracking (around 90%). 
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Even if, by the lights of present-day mechanists, such models of cognition qual-
ify as incomplete (they obviously fail to “bottom out” at the neurological level), 
Newell and Simon understood that in order to make the abstract structures expla-
natorily relevant they needed to relate them to their physical limitations and the 
structure of the environment. They presuppose that there are capacities that the 
information-processing system has, like scanning and recognizing the letters and 
numbers from the external memory in cryptarithmetic tasks. These capacities may 
be realized, as they stress, by parallel perceptual processes rather than by serial 
symbolic processes that require attentional resources. 

Let me turn to crickets. Crickets display several interesting behaviors; one of 
them is phonotaxis, or the female’s ability to walk toward the location of the 
chirping male. The first step is to investigate the cricket’s behavior. The carrier 
frequency of the male cricket’s song, which is used by the female to detect con-
specifics, is around 4-5 kHz; the ears of the crickets, located on their frontal legs, 
consist of a pair of tympani and vibration receptors. Crickets have a peculiar audi-
tory system in which the two ears are connected by a tracheal tube to form a pres-
sure difference receiver (as it is called in engineering). This gives them good  
directionality but only for a specific frequency – that of the calling song they need 
to localize. The same solution was mimicked on a robot (see Webb 2008: 10 for 
details). Sound information for other frequencies does not have to be filtered out 
by the cricket, as the very physical setup makes the calling song frequency easier 
to localize – other frequencies are still audible but harder to locate. Information-
processing is not really essential to the explanation of how the sound is located. 

Mate-finding behavior is not simply to approach the loudest sound – females 
select the sound that has the right temporal pattern. Barbara Webb and her colla-
borators hypothesized that the significant cue for the filtering that is needed to 
recognize the pattern could be the onset of the sound. This idea was embodied by 
a simple neural circuit connecting the auditory neurons with motor neurons: the 
left auditory neuron excited the left motor neuron while inhibiting the right motor 
neuron, and vice versa. As a control mechanism, the circuit was able to reproduce 
a number of behavioral experiments on crickets (Webb and Scutt 2000). 

Note that the only purely computational part of the whole complex mechanistic 
explanation–which, being admittedly idealizational, seems to fully adhere to me-
chanistic standards–is the neural circuit. This mechanism explains why the cricket 
moves in response to chirps. But the physical morphology of cricket ears, the fre-
quency of the sounds they make, and motor activity towards the sound, are not 
explained with the operation of the artificial neural network in robotic models of 
crickets (Webb 2008). In other words, the physical implementation of a computa-
tional system–and its interaction with the environment–is outside the scope of 
computational explanation. Note that Webb's crickets are not plausibly extended 
into their environment, and this is the reason why the interaction is not explained 
computationally. But this is also the case for any extended system: if it does not 
comprise the whole universe, it will have some environment which is different 
from itself. So even spatially and temporally widely distributed systems have 
boundaries, and this is why the causal interaction between the system and its envi-
ronment is outside the scope of any intersystem explanation.  
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It is the physical implementation that explains why there is computation in the 
first place: you cannot understand why there is computation by saying that there is 
computation, which would be simply circular. Mechanistic explanation certainly 
adopts a reductionist stance that requires explaining computation with non-
computational, lower-lever processes; but these lower-level processes may be 
screened-off when we talk of invariant generalizations that involve higher levels 
of computational systems. In other words, to fully explain why a robotic cricket 
finds the source of the sound, we need to refer to its electronic and mechanic  
details; these are different in biological crickets. But there are higher-level genera-
lizations, involving not only information-processing but also sensing and  
movement, that are common in both, and this is why the robotic cricket is an  
explanatory model. 

What does all this mean for the computational theory of mind? First of all, it 
means that there is more to cognition than computation: there is some implementa-
tion of computation required for the explanation to be complete, and implementa-
tion goes beyond purely formal properties of computation; and there is some  
interaction of computation with the environment if the capacities of a cognitive  
system in the environment are to be explained. More specifically, reaction time is 
only partly explained computationally: the complexity of the cognitive algorithm, 
as analyzed mathematically, cannot be used to predict the efficiency of running 
the algorithm without knowing appropriate empirical details of underlying hard-
ware. Moreover, for relatively short input sizes, the error of measurement might 
make it impossible to decide empirically which algorithm is implemented based 
only on reaction time (for a review of how reaction time is used in psychological 
research, see Meyer et al. 1988). 

Resource limitations are also impossible to explain computationally. Instead, 
they act as empirical constraints on theory; for example, Newell and Simon im-
pose the condition that short-term memory capacity not exceed the limit of 7 plus 
or minus 2 meaningful chunks. To put the same point somewhat differently, in 
order to understand a cognitive computation and to have a theory of it, one needs 
to know the limits of the underlying information-processing system. 

Moreover, all environmental conditions that influence a computation, such as 
getting feedback from the environment, are on the contextual level. It follows 
from this that representational mechanisms are not fully explained in a computa-
tional fashion; some of their parts are generic: they are simply interactions with 
the environment (for a fuller elucidation of what representational mechanisms are, 
see Miłkowski, forthcoming, chapter 4). Even Fodor (1980) acknowledged that an 
account of reference to the external world must contain some model of the envi-
ronment; what he denied was that such a theory, which he called ‘naturalistic psy-
chology’, could be built. 

These limitations in no way undermine cognitive research. A discovery that 
complex information-processing systems can be explained in a very simple man-
ner, which ignores most of their complexity, would have been much more surpris-
ing. If we want to take complexity into account, the causal structure of the system 
will come to the fore, and computational facets of the system will be just one of 
many. But the cogency of the computational theory of mind is not based on a bet 
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that only formal properties of computation are important in explaining the mind. It 
is based on an assumption that cognitive systems peruse information, which is not 
undermined by the realization that what these systems do goes beyond informa-
tion-processing. This is a natural corollary in the mechanistic framework I 
adopted, and the prospects of computationalism have not become any the worse 
for that. 

But could computational mechanisms be dispensed with in the theory of cogni-
tion? Are they not in danger of being replaced by dynamical modeling? In particu-
lar, aren’t dynamical models substantially different from what the neo-mechanist 
models? Let me turn to such questions now. 

4   Is There Cognition without Information-Processing? 

Despite prima facie competition from non-classical approaches, computation still 
plays an important part in contemporary cognitive science, for it is almost a defini-
tional feature of cognitive systems that their behavior is driven by information. 
And as far as an understanding of information-processing is concerned, no one 
seems to have the foggiest idea how to do without computational explanation. 

Yet the role of computation in cognition may be denied. The dynamical ap-
proach to cognitive phenomena stresses that “rather than computation, cognitive 
processes may be state-space evolution” within dynamical systems (van Gelder 
1995: 346). At the same time, dynamicists tend to understand computation in a 
very restricted way: as “the rule-governed manipulation of internal symbolic re-
presentations” (van Gelder 1995: 345), which excludes some models of computa-
tion, such as artificial neural networks or membrane computers by definitional 
fiat. Some also stress that computation has to be formal (Wheeler 2005: 117-8, 
Bickhard & Terveen 1995) and that Turing machines have no real temporal di-
mension. Flexible and adaptive behavior is not to be understood in terms of rules 
and representations but in terms of dynamical systems. But this does not contra-
dict the mechanistic account of computation. 

Note that the claim I defend is not that cognition is computation over language-
like syntactic symbols, or representations, or that it is logical inference. Neither do 
I defend Bechtel’s idea that representations are crucial to cognitive explanation 
(Bechtel 2008): there might be minimally cognitive systems that do not have states 
that are representational in any thick sense, like the robotic crickets. This is not to 
be understood as undermining the role of representational explanations; I think 
that representation is both germane and irreducible to computation (the notion of 
representation is understood here in the sense defended by Bickhard & Terveen 
1995 or in the guidance theory of representation of Anderson & Rosenberg 2008; I 
vindicate a mechanist variation of these theories in chapter 4 of Miłkowski, forth-
coming). My claim is that cognition involves information-processing and, as such, 
it involves also other kinds of processes that need to obtain in order to support the 
information-processing mechanisms. One interesting corollary is that there is 
computation without representation but there is no representation without  
computation. 
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If you think that the core of cognition is adaptive behavior, and that adaptive 
behavior is best explained not by recourse to information, but to certain kinds of 
self-organization, you will probably reject even my weak claim. For example, 
some defend the view that adaptive behavior is possible only in certain kinds of 
autonomous systems (Barandiaran & Moreno 2008), and that autonomous systems 
are dissipative dynamical structures far from thermodynamical equilibrium. The 
flexibility of their behavior is to be explained as self-maintenance of the far-from 
equilibrium state. In a less physicalist version, autonomy, called “autopoiesis” 
(Maturana & Varela 1980), is to be understood as a kind of cyclical self-
organization. 

Interesting as these ideas of autonomy are, they do not seem to be specific 
enough to address cognition. Adaptive behavior is a broader category; although 
we might talk about adaptation when describing how a slime mold reproduces, 
ascribing cognition to a slime mold seems a bit far-fetched. But even if we make 
the notion of cognition as broad as that of adaptive behavior, the question remains 
whether it is best understood in terms of energetic autonomy only. Barandiaran 
and Moreno seem to deny it, admitting that the neural domain is “properly infor-
mational” (Barandiaran & Moreno 2008: 336). They take time to explain that they 
mean only information “in the sense of propagation of dynamic variability as 
measured by information theory”, and not as representational or semantic informa-
tion. But my notion of information is similarly quantitative. Moreover, only reac-
tive autonomous systems, which are actually minimally cognitive, can be fruitfully 
explained with dynamical equations or control theory. To account for higher com-
plexity, one needs to stipulate new kinds of autonomy, and this actually boils to 
down admitting information-processing and representational capabilities as crucial 
(see Vakarelov 2011 as an interesting example of this strategy). In other words, 
autonomous systems are just a part of the story about cognition; they need to be 
complemented with some forms of information-processing this way or another. 

Admittedly, the kinds of explanation embraced by theorists of autonomy will 
differ significantly from the computational models of traditional symbolic cogni-
tive science. But, all in all, they will need to relate to some kind of information-
processing. Otherwise, it is difficult to understand how cognition should be  
possible; processes that play no role in the transformation or communication of 
incoming information would hardly deserve to be called “cognitive”. An activity 
is cognitive insofar as it is reasonably sensitive to how the world is, and such  
sensitivity requires that there exist reliable processes capable of detecting informa-
tion. This is not to say that cognition is just building maximally accurate represen-
tations of input information (though traditionally, information-processing theories 
of cognition focused too much on perceptual inputs); that would be a kind of con-
templative caricature of cognition. Cognition is responsible for flexibility of beha-
vior, so it has a role in guiding it; similarly, information in cognitive systems is 
also related to their goals and cannot be reduced to perceptual stimuli. 

Because cognition in real biological systems is not an end in itself and it has to 
be helpful in dealing with the world, it will need to be supported not only by in-
formation-processing structures but also by sensor and motor mechanisms that 
enable active exploring and changing the environment. But a general denial of the 
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role of information would also lead to the conclusion that models in computational 
cognitive science cannot be genuinely explanatory; if they are predictive, it has to 
be by a fluke. Yet at least some computational models are perfectly fine explana-
tions. Also, alternative, completely non-informational explanations of the very 
same phenomena do not seem to be forthcoming at all. 

Let me show an example where dynamical modeling is thought to preempt a 
traditional symbolic explanation. Thelen et. al (2001) explain a phenomenon seen 
in 7–12 month-old infants. In Piaget’s classic “A-not-B error,” infants who have 
successfully uncovered a toy at location “A” continue to reach to that location 
even after they watch the toy being hidden in a nearby location “B.” Thelen et al. 
question the traditional supposition that the error is indicative of the infants’ con-
cepts of objects or other static mental structures. Instead, they demonstrate that the 
A-not-B error could be understood in terms of the dynamics of ordinary processes 
of goal-directed actions: looking, planning, reaching, and remembering. A formal 
dynamic model based on cognitive embodiment both simulates the known A-not-
B effects and offers novel predictions that match new experimental results. This 
seems like a real challenge to traditional computational explanation. 

But what is the strategy of Thelen et al.? They show that the phenomenon 
might be explained in terms of motor planning. This is a deflationary strategy: we 
need not refer to higher-level mental structures at all, and Piaget’s logical attempt 
at understanding the phenomenon might be misplaced. Two comments are in or-
der, however. First, motor planning does not preclude processing of information. 
On the contrary, these researchers use the notion of information to talk about 
neural findings relevant to an understanding of action planning. The only way 
their approach differs from an appeal to traditional information-processing is that 
their model is framed in dynamical language, and plans are considered not as dis-
crete representations but as continuous, graded and evolving in time. Second, the 
mechanistic approach does not favor explanations of behavior in terms of  high-
level cognitive activity over accounts that appeal to factors of motor activity, es-
pecially if the latter bring more explanatory value, parsimony, simplicity of the 
model etc. To sum up, even radical dynamical models, if they still uphold the 
claim that the phenomenon is cognitive (and not just, say, physiological), explain 
it computationally, by referring to dynamics of information. 

It is sometimes claimed that dynamic explanations of cognition differ radically 
from computational ones (van Gelder 1995, Beer 2000). It is, of course, a truism 
that physical computers are dynamic systems: all physical entities can be de-
scribed as dynamic systems that unfold in time. Computational explanation in its 
mechanistic version clearly requires that the physical implementation be included 
in the constitutive explanations of cognitive phenomena; and that means that me-
chanistically adequate models of computation have to include temporal dynamics. 
Implemented computation is not a formal system, it is a physical, spatiotemporal 
process. 

What proponents of dynamicism claim, however, is something stronger: 

a typical dynamical model is expressed as a set of differential or difference equations 
that describe how the system’s state changes over time. Here, the explanatory focus 
is on the structure of the space of possible trajectories and the internal and external 
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forces that shape the particular trajectory that unfolds over time, rather than on the 
physical nature of the underlying mechanisms that instantiate this dynamics (Beer 
2000: 96). 

It seems, therefore, that dynamic explanation will abstract away from mechanisms 
in general, and from computational mechanisms in particular. And, indeed, it was 
argued that dynamicism involves the covering-law type of explanation (Walmsley 
2008). Yet the paradigm examples of dynamical explanations are also quite easy 
to interpret as mechanistic (Zednik 2011). More importantly, many proponents of 
dynamical explanations require that they also refer to localizable and measurable 
component parts of systems (Eliasmith 2010, Grush 2004). It seems, therefore, not 
at all justified to say that dynamical explanations do not appeal to the physical 
nature of the underlying mechanisms. Some do, some do not; and I would not be 
so sure whether it is fine when they do not. 

There need be no conflict between dynamicism and my version of computatio-
nalism. If these are distinct explanations, there is no problem: they will usually 
focus on different aspects of cognitive functioning. Dynamical systems, in contrast 
to connectionist models, are not usually proposed simply as replacements of clas-
sical explanations. As most real-life explanations do not pertain to the same ex-
planandum phenomenon (the cognitive capacity itself is differently conceived), 
they may still be integrated in the overall picture of cognition. 

As Newell stressed many years ago (Newell 1973), psychologists try to play a 
game of 20 questions with nature and win: they think that you can simply build a 
list of dichotomies and know the nature of cognition. You cannot, and integration 
of various explanatory models is more valuable than overplaying  methodological 
differences. Playing Watt governors against production systems seems silly to me. 
Properly explanatory models of cognition (for all intents and purposes, a Watt 
governor is not a model of any cognitive capacity) that are cited repeatedly by 
dynamicists, such as Elman’s modeling of language in a temporal manner (Elman 
1990), are also computational, at least by my standards. Elman used a connection-
ist model after all and found an interesting way to interpret its structure. But it was 
still a piece of computational machinery. 

5   A Plea for Pluralism 

Using a single computation model to explain all possible cognitive systems would 
be premature at best. Some really basic cognitive systems, such as sponges or 
plants, may be explained in terms of simpler computation models, whereas more 
complex processes require interlevel explanations to give meaningful, idealized 
explanations and predictions. In other words, my explanatory pluralism involves 
both the claim that computation is not the only way to explain cognitive systems 
and the thesis that various computation models might be useful in cognitive 
science, as it seems plausible that different models may best describe organization 
at the bottom level of the mechanism in various systems. 

Interestingly, Webb’s research on cricket phonotaxis, has been interpreted by 
some as an example of a non-computational model (Wheeler 2005). The only  
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reason to do so was that a huge role was played by the morphology of the robot. I 
do not want to play the same trick by interpreting Webb as only computational–
even if the artificial model relied on artificial neural networks that did something 
important. 

Excluding some dimensions from the description of research should be moti-
vated by something else than just enthusiasm for other flavors of modeling. It 
should improve our understanding of the phenomena, as all idealization in science 
should. Successful examples of explanation are pluralistic: they involve explana-
tions of computation, physical structures, environments, and real-time interaction. 

It is too early to attempt to replace all explanatory methodologies with a single 
one. The cooperation–and competition between–modelers using different model-
ing techniques fuels progress in research. Previous accounts of explanatory utility 
of cognitive models could not, however, accommodate this richness of methods. 
Traditional machine functionalism implied that the implementation details are no 
longer interesting if our goal is to understand cognition, and while Marr (1982) 
stressed that implementation is part of a proper explanation of computation, he did 
not rely on these details to explain anything. But over time, the traditional functio-
nalist model became less and less credible, as the role of neural detail was being 
acknowledged. Many different tools are needed to describe cognitive mechanisms. 
Real science is messy, but that’s not a bug - it’s a feature. 
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Abstract. The Chinese Room Argument purports to show that‘ syntax is
not sufficient for semantics’; an argument which led John Searle to conclude
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ever exhibit true understanding. Yet, although this controversial argument
has received a series of criticisms, it has withstood all attempts at decisive
rebuttal so far. One of the classical responses to CRA has been based on
equipping a purely computational device with a physical robot body. This
response, although partially addressed in one of Searle’s original contra argu-
ments - the ‘robot reply’ - more recently gained friction with the development
of embodiment and enactivism1, two novel approaches to cognitive science
that have been exciting roboticists and philosophers alike. Furthermore, re-
cent technological advances - blending biological beings with computational
systems - have started to be developed which superficially suggest that mind
may be instantiated in computing devices after all. This paper will argue that
(a) embodiment alone does not provide any leverage for cognitive robotics
wrt the CRA, when based on a weak form of embodiment and that (b) unless
they take the body into account seriously, hybrid bio-computer devices will
also share the fate of their disembodied or robotic predecessors in failing to
escape from Searle’s Chinese room.

John Mark Bishop
Goldsmiths, University of London, UK
e-mail: bish@gold.ac.uk

Slawomir J. Nasuto
University of Reading, Reading, UK
e-mail: s.j.nasuto@reading.ac.uk
1 In this work the term enactivism will be used to delineate theoretical approaches

to cognition that emphasise perception as action encompassing, for example,
Gibson’s ‘ecological approach’; Varela et al’s ‘embodied mind’; Nöe’s ‘action as
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1 Introduction

In his 1980 paper Minds, Brains and Programs (MBP)[46] John Searle for-
mulated his influential Chinese Room Argument (CRA) aimed at refuting
the possibility of achieving the holy grail of Artificial Intelligence2, what he
termed ‘Strong-AI’: that is, creating a truly intelligent computational device;
instantiating mind in machine.

In spite of the controversy it generated, CRA remains a hallmark argu-
ment in the debate over the possibility of instantiating mind in computing
devices. In its most basic form, it addresses the most radical version of the
claim as proposed by good old fashioned Artificial Intelligence (GOFAI)3.
Nonetheless many scholars do not agree that the CRA succeeds or at least
try to suggest frameworks which could circumvent its conclusions. One such
area purported to escape the CRA argument is ‘cognitive robotics’. The hope
of its proponents is that by providing a physical body, computational opera-
tions are married to cognitive processes via embodiment and enactivism, and
by virtue of the latter the CRA argument fails to apply.

This paper will briefly introduce the original argument and will argue that
in its current form, cognitive robotics is more aligned with a particular form
of enactivism (weak enactivism) which does not seem to offer a way out of
Chinese Room.

Furthermore, there has been a nascent field of hybrid systems which blend
artificial and biological systems. The question can then be extended to such
hybrids: some forms of which perhaps might circumvent the CRA.

The paper will review such developments and will consider them from this
perspective.

2 Chinese Room Argument

The CRA has been considered one of the most influential arguments in the
history of philosophy of mind achieving at the same time a status of notoriety
amongst the proponents of AI who aimed but failed to quash it with various
counter-arguments[10][45].

In a thought experiment John Searle - who can only speak English - is
locked in a room and communicates with external interlocutors via messages
written on paper4. Searle has a rule-book with instructions in English for
2 The Dartmouth Proposal, “Every aspect of learning or any other feature of in-

telligence can be so precisely described that a machine can be made to simulate
it”,[30].

3 From Newel & Simon (1976), ’a physical symbol system has the necessary and
sufficient means for ’general intelligent action’ ’.

4 NB. In this work we deploy an extended form of the CRA; in the original ver-
sion interlocutors merely pose [Chinese] questions about a given story [also in
Chinese], which Searle, using his rule-book, responds to appropriately.
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manipulating strings of [Chinese] symbols received as input and subsequently
formulating an output string of symbols, such that the characters appear
to the interlocutors to be linguistic responses in Chinese; in this manner
communication is achieved via appropriate exchange of Chinese ideographs.

Yet, in spite of being able to converse with the Chinese interlocutors in a
way that for all purposes appear to them as if he can understand Chinese,
Searle proposed that in fact he does not understand a word of Chinese, no
matter how skilful his manipulations of the Chinese symbols is.

The CRA was intended to show that computers may one day become
skilful enough to appear to process language in a meaningful way by using
only syntactic manipulation, however by this process they remain incapable
by themselves of giving rise to meaning or semantics.

Thus the Chinese Room Argument challenges functionalism and compu-
tational theory of mind. The latter proposes that mental states are simply
computational states which are implementation-independent. As such, they
can be instantiated in a computational device by mere symbol manipulation.
Although John Searle did not dismiss the possibility that machines could
possess intentionality and true understanding (indeed he specifically identi-
fied humans as such ‘biological machines’), he did not believe these qualities
could come about by sheer computational symbol manipulation alone.

2.1 Intentionality in Computational Systems?

A number of arguments have been put forward against the CRA, some of
which had already been anticipated by Searle in the original paper[46]. These
counter proposals can be categorised into groups purporting to refute CRA
on different grounds. Various forms of systems replies try to argue that un-
derstanding is not a property of Searle alone, but of the entire system. What
that system should be is the subject of particular variants of the systems
reply.

Some variants of the System reply posit to give rise to true understanding
the system must be effectively implementing a simulation of a brain (or at
the very least, be imply,enter via some kind of connectionist architecture).
Detailed taxonomies of different replies to the CRA together with rebuttals
have been presented elsewhere[10, 45, 46]. Instead of providing yet another
one here, we wish to focus on a specific kind of systems reply, the so called
‘robot reply’, which although considered in the original paper by Searle, has
more recently gained particular momentum thanks to the links between cog-
nitive robotics and a new move in cognitive science called enactivism[32, 41].

The robot reply proposes that true understanding must arise from ground-
ing of meaning in the physical world and hence that the system must en-
able such grounding to take place. This is to be achieved by an appropriate
rule-book enabling the robot to implement the ‘right type of manipulations’
and concomitant sensory motor coupling afforded by the robot’s interactions
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with the external world. It is claimed that such an extended system (robot
plus appropriate computational mechanism; the latter often proposed to be
a connectionist architecture or brain simulation) can fulfil the necessary and
sufficient conditions for meaning and understanding to arise.

However, as previously mentioned, the initial extensions of the basic CRA
discussed by Searle in the original paper[46] explicitly addressed such a
’Robot reply’ which Searle claims buys nothing, for the CRA could easily be
extended by providing additional input in the form of symbolic values cor-
responding to camera and other sensory readings; the outputs strings Searle
now produces encompassing both the robots verbal responses [in Chinese]
and symbolic commands to manipulate (unbeknownst to Searle in CRA)
the external objects by the robot’s actuators. Such an extension would only
require a more complicated rule-book; the extra syntactic inputs and dif-
ferent forms of response would continue to afford no real understanding if
it were not there in the first place. In accord with Searle’s response to the
Robot reply, we similarly conclude that if we were to attribute genuine men-
tal states/intentionality to such a computationally driven robotic device, we
would also be obliged to do so also for any modern car equipped with elec-
tronic sensors and computer.

3 Robotic Reply and Enactivism

A very refreshing movement within cognitive science has gradually been
emerging which rejects the computationalist view of cognition in favour of
enactivism[53]. Enactivism emphasises the importance of embodiment and
action in cognition and proposes that the most fundamental notion is that of
embodied autonomy, which superficially at least offers renewed fundamental
justification to cognitive robotics as a useful tool able to address the most
fundamental questions about cognition and understanding.

Cognitive robotics itself could be viewed as a departure from the disem-
bodied good old fashioned AI (GOFAI) as it also considers that embodiment
is fundamental for cognition to arise. Moreover, various forms of cognitive
robotic stress to a different degree the importance of embodiment for cog-
nition, with some placing more emphasis on the actual body and its affor-
dancies, than on the nitty gritty of the central ’computational’ processing
unit[43, 44]. In fact, this modern successor of GOFAI has been proposed to
provide a fertile experimental ground for cognitive science[32]. Considered to
be a radical departure from GOFAI by its enthusiasts, it has found itself in
mutually beneficial symbiosis with some forms of enactivism[29, 41]. At first
sight it thus seems that such an alliance may be able to provide a rebuttal
to CRA on theoretical grounds.
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3.1 Does Cognitive Robotics Escape the CRA?

In order to answer the above question it is important to emphasise that
there are many interpretations of enactivism5 and that cognitive robotics is
particularly aligned with versions that emphasise the role of sensori-motor
couplings[37]:

our ability to perceive not only depends on, but is constituted by, our pos-
session of ... sensorimotor knowledge.

at the same time eschewing Varelian enactivism in which fundamental au-
tonomy stems from the organisational closure of living systems[2]:

it is somehow intuitive that cognition relates to sensorimotor interactions
rather than to material self-constructing processes.

This form of enactivism embraces Gibbsonian affordances and moreover pro-
poses that the experienced qualities[37]

pattern[s] in the structure of sensorimotor contingenc[ies].

are sensori-motor laws[40, 41]. As Nöe put it[37]:

for perceptual sensation to constitute experience, that is, for it to have gen-
uine representational content, the perceiver must possess and make use of
sensorimotor knowledge.

Although we agree that sensorimotor interactions are important for cognition,
the move away from the organisational closure proposed by Barandiaran and
Moreno[2]:

... as well as being somewhat awkward for cognitive robotics (since it would
imply that no genuine cognitive behaviour can be expected from non-self-
constructing artifacts) this thesis [that autopoiesis is necessary for cognition]
is also conceptually uncomfortable.

appears to us unjustified; for the above sentiment seems to be based on ei-
ther expediency and handpicking the elements of enactive theory that suit
a particular style of robotic approaches to cognition, or on confusion be-
tween organisational closure and autopoiesis. However, although the latter
two notions seem intimately linked - with the notion of autopoiesis being
the minimal organisation of the (unicellular) living systems - organisational
closure is broader as it characterises further autonomous systems such as
multi-cellular organisms as well as the nervous or even the social systems[18].
5 Our discussion specifically addresses the particular interpretation of sensory mo-

tor account derived from early works of Nöe and O’Regan on this subject, which
seems to have been adopted within cognitive robotics community[29, 32, 43, 44].
It is important to note though that both authors have since developed their
accounts in separate and increasingly divergent directions[38, 42].
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Nevertheless, in spite of the convenience of such an argument for current
cognitive robotics, the concentration of the sensorimotor account solely on
the external world - with the reduction of the role of the body to mere
instantiation of appropriate sensory motor couplings and disregard for the
material self-constructing processes which also constitute the integral part of
the body - does not seem to to us to afford any extra mileage over and above
the original robot reply considered by Searle in MBP.

Conversely, we suggest that as long as efforts within cognitive robotics
are directed only towards grounding meaning in the external world - whilst
neglecting the need for concomitant grounding in internal states - all devices
so constructed can ever hope to achieve are merely ever more sophisticated
reflections of the relational structure of the external world in the relational
structure of their internal [formal] representations, with fundamentally no
account of either ‘raw feel’ or the genuine understanding of anything.

To illustrate this consider how Searle - merely deploying the CRA rule-
book inside the Chinese room - could ever answer the following question
(posed, of course, in Chinese), “Are you hungry?”. We suggest that there is
a fundamental difference between Searle’s ability to answer questions of this
form, with his ability to ‘converse’ about the relationships between objects
external to the Chinese Room. In the latter case the rule-book, augmented
by any of Searle’s own contemporaneous notes6, may enable him to identify
symbol associations and appropriate manipulations without actually entail-
ing any understanding on his part. In this sense he indeed would be acting
(perhaps with the help of a pen and paper) as an expert system or a neu-
ral network - making associations between the symbols and the frequencies
of their co-occurrences. A neural network can capture such associations be-
tween objects by tweaking its internal weights - albeit this is a mechanistic
operation, itself devoid of meaning (i.e. ungrounded).

In fact, the above observation applies whether or not one considers ‘the
classical Chinese Room Argument’ or the embodied (robot-reply) version as
long as the embodiment is merely intended to provide sensory motor coupling
in the sense of extra information about the possible manipulations various
objects entail. This is why the Chinese Room Argument enables Searle to
make reasonable responses as long as his queries are exclusively about the
external world; the Chinese room can algorithmically capture such ‘semantic
webs’, as this is essentially merely a statistical problem - computers already
can do this.

Internalising the entire Chinese room7 as in Searle’s initial response to
the systems reply to the CRA will not help either, as long as Searle is not
allowed to interact with the external world directly (i.e. without the veil of
6 Such ‘notes’ may define ‘internal representations’ that, for example, might high-

light specific associations between strings of symbols.
7 I.e. Searle memorises the rule-book, his notes etc. and subsequently performing

all operations in memory such that there is nothing in the system that is not
now inside Searle.
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the formal CRA rule-book) for, in this case, Searle would immediately start
forming mappings between his own internal meanings and the new symbols
and their associations (this is exactly how we learn any foreign language).
Meaning would therefore be transferred by association to the new symbols,
which by themselves do not originally carry any meaning (to a non Chinese
speaker).

Similarly, the question of whether a symbolic computational, sub-symbolic
connectionist, or continuous dynamical system approach should be adopted
translates into the question of formal richness of the internal relational uni-
verse or the mathematical nature of the mapping between external and in-
ternal relational spaces. Although there are very important considerations
delineating some key properties of cognitive states, they pertain ’only’ to
necessary aspects of intentionality related to the nature of regularities in the
external world (continuous and statistical or symbolic and recursive) and the
best formal means to extract and manipulate them; they do not reference,
and remain ungrounded in Searle’s own internal bodily states. As various
CRA variants elaborate, the precise nature of operations needed for the con-
struction of internal representations (or means by which a mapping between
external and internal relational structures is achieved) is irrelevant.

Some cognitive roboticists concede that current robotic platforms have
been too impoverished in terms of their sensory surface to provide proper
embodiment, but they insist that it is merely a matter of providing robots
with more sensors in order to achieve genuine intentional states. However,
adding more sensors (e.g. touch, proprioception) and actuators does not buy
anything apart from larger rule-books, vectors to correlate or look-up tables.

The above considerations, important as they are, are clearly insufficient to
fully ground intentional states as, for example, Searle in CRA would painfully
become aware if the CRA experiment was ever actually conducted by cynical
interrogators. The demonstration would be very simple, if cruel, as all that
would be needed is to lock the door of the Chinese room and wait; soon
enough, as the monoglot Searle remains unable to communicate his bodily
needs to the outside world in Chinese, the CRA (or Searle to be precise)
would be no more8.

This is because the rule-book details purely formal associations between un-
interpreted symbols. No amount of codifying associations and frequencies of
co-occurrences between symbols relating to the external world will help Searle
in the Chinese room communicate his internal states and desires, or to answer
questions that inherently call for reference to the internal state of the ‘system’
(of which Searle is a part). E.g. questions such as :- ‘do you believe this story
to be true?’, ‘do you like this story?’, ‘how does this story make you feel?’, etc.
Any of the associations the rule-book could be permitted to codify (that Searle
could try to use to answer such questions) will, ex hypothesi, relate only to
8 Searle, being unable to communicate his basic bodily requirements for food and

water to his interrogators outside there room, would quickly die.



92 S.J. Nasuto and J. Mark Bishop

external objects and hence will remain mere third person observations; none
can ever detail appropriate first person associations9.

Ironically, the inability of Searle (in the CRA system) to communicate his
own internal states can be contrasted with his perfect ability, ex hypothesi,
to communicate about the internal states of Chinese interlocutors; they are
mere external states to him after all.

The strict sensorimotor account - and hence much of modern cognitive
robotics - for all their claims of radical departures from computational-
ism/GOFAI, seem to invoke a parallel move to the implementation invariance
of the latter approaches; this time a hardware implementation invariance,
which in effect states that details of different embodiments do not matter
as long as they afford the same sensory motor contingencies. The latter,
though are assumed to amount to appropriate causal relationships between
possible manipulations or actions (how the sensation changes in response to
object manipulation) and sensations (how the objects ‘feels’). However, be-
cause body can be memoryless, invoking hardware invariance principle, the
sensory motor laws must amount to appropriate co-occurrences of activations
of appropriate parts of the nervous system.

Although the sensory motor account seems intuitive and appealing in its
emphasis of the fact that we understand by being in the world and acting
upon it, nevertheless its account rests on some special role or properties that
motor actions must have when leading to perception of their outcome. Why
’a pattern in the structure of sensorimotor contingencies’[37] is any different
from patterns in sensory data? After all, both must result in (and only in)
respective concomitant patterns of activity of neurons in appropriate brain
structures.

If, rather than talking about sensory motor coupling we substitute an-
other sense for acting - we also get co-occurrences and it is not easy to
see why this would lead to fundamentally lesser (rather than simply dif-
ferent) understanding than sensory-motor coupling. At the end of the day
whether it is sensory-motor or sensory-sensory coupling, both correspond to
patterns of neural activations co-occurring in a coordinated manner in the
brain and there is nothing in the sensory motor account that explains why
co-occurrences between sensory-motor neural activities should assume such
special role.10

9 Note that the original CRA argument is about Searle answering questions about
a story; the questions we provide above are merely illustrations of the inherent
limitation of CRA system that could be gleaned by more Searle-sympathetic in-
terrogators.

10 Interestingly, that the co-occurrences in the form of correlations (actually
sensory-sensory correlations sic!) are indeed important is illustrated by the rub-
ber hand illusion, in which subjects, when presented with a rubber hand in ap-
propriate position in their field of view and observing how that hand is stroked
simultaneously with their own (hidden) hand, report feel that the rubber hand
is their own[5].
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The other possibility is that either hardware implementation invariance
is violated (the body does count) or there is more to sensory motor laws
than action-sensation associations. Whichever is the case, both alternatives
seem to point to the same conclusion, the extra “ingredients” present must be
related to the biological makeup of the organism. At the most fundamental
level, these will be bio-physico-chemical properties of the body (including the
nervous system) induced by motor actions and sensory activations; metabolic
properties of its constituents at all levels (as we can talk about metabolic
needs of the entire organism, of its components - eg the brain but also about
metabolic properties of individual components - the cells).

Consistently with Varelian forms of eanactivism[18, 38], true intentionality
can only arise in systems which ground meaning jointly - respecting exter-
nal constraints as well as internal states - a situation which, as the CRA
illustrates, is impossible to achieve by a computational (or in fact any mech-
anistic/formal) system as they have no such physiological states at all.

What is closely related is that even though formal systems (even those
instantiated in a robotic device) may be in principle rich enough to reflect the
complexity of the relational structure of the external world, there is nothing
in their constituent structures that will make them do so; or do anything
at all for that matter. This is because of their very nature - abstraction of
any mechanistic rule or formalism from any system that instantiates it. For
example what the symbolic operations are should be invariant to the means by
which they are accomplished. Thus, there is nothing that inherently compels
an artificial agent to do anything, to perform any form of formal manipulation
that could help it to map out the regularities of the external world. Turing-
machine based robotic systems can at best, using Dennett’s phraseology,
instantiate ‘as-if’ autonomy and teleology; in reality merely reflecting their
designers wishes and goals.

In contrast, real cognitive agents have internal drives at all levels of organ-
isation - survival, metabolic and physical - that make them act in the world,
make them react to the external disturbances (information) and manipulate it
in such a way that they will support immediate and delayed fulfilment of the
drives at all levels. Such manipulation of information is effectively intentional
as it is tantamount to the biological, biochemical and biophysical changes of
real cognitive agents’ biological constituents, which are intrinsically grounded
(they have metabolic, physiologic and ultimately survival values).

The intentionality comes not only from the potential mapping between
the relational structures of the external world and the states of the biologi-
cal constituents; but also appears as a result of external disturbances (which
under such mapping correspond to information manipulation) which are also
intrinsically grounded as they follow real physical laws and do not come about
merely for the symbol manipulation’s sake. Systems which are based only on
formal manipulation of the internal representations are thus neither inten-
tional nor autonomous (as no manipulation is internally driven nor serves an
intrinsically meaningful purpose other than that of system designer’s).
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4 Modern Embodiments

But the story does not end with robotic systems controlled by Turing-
machines alone. In the recent years, huge strides have been made in advancing
hybrid systems. These devices are robotic machines with both an active neu-
robiological and artificial (e.g. electronic, mechanical or robotic) components.
Such devices start to blur the divide between the artificial and the biological.
In particular, systems integrating artifacts with the nervous system may offer
interesting avenues to explore new potential counter arguments to the CRA.

Indeed, there has been a long history of attempts to create interfaces be-
tween artefacts and the motor system, in the form of prostheses[34]. Inter-
faces with the sensory modalities include cochlear implants for improving
hearing[4], as well as retinal implants, which recently have been shown to be
capable, in principle, to enable reading to their users[17, 57].

Great strides made in implant technology advanced it beyond augment-
ing sensory modalities towards interfacing directly with the brain, with deep
brain stimulation being one of the clinically approved treatments for some
neurological disorders[16, 25]. Recent animal studies have successfully demon-
strated possibility of creating implant replacing deep brain structure such as
hippocampus for restoring existing memories[3].

In the above case the implant was trained on data recorded from the hip-
pocampus of an animal previously trained on a spatial memory task. When
subsequently the hippocampus was inactivated, the animal showed impair-
ments on the same task, whereas the behavioural measures of task perfor-
mance were restored, once the hippocampal input/output function has been
replaced by the implant.

Other studies have demonstrated that implant devices could be used to lay
down new associations, as was the case for classical conditioning of rats with
synthetic cerebellum implants[31]. Rats with inactivated cerebella shown no
ability to learn new classical conditioning responses, whereas in animals in
which the input output functions of cerebella have been replaced by implants
created to mimic them, the rats recovered ability to learn new classically
conditioned responses.

Brain Machine Interfaces (BMIs) open new communication channels by
allowing direct interface between the brain structures (typically cortex) and
external devices, and may afford a seamless interface with prostheses[24, 27,
33, 36, 54]. Brain Computer Interfaces (BCIs) strive to achieve similar aims by
less invasive means (typically using noninvasive EEG signals), thus extending
the range of potential applications beyond the clinical realm[7, 12, 26].

Finally, animats - robotic embodiments of neural cultures grown in vitro -
allow for investigation of the biological neuronal networks underlying sensory
processing, motor control, and sensory motor loops[14, 28, 39, 55].

Given such considerable advances, it then becomes a very pertinent ques-
tion to enquire whether some form of bio-machine hybrids could achieve what
does not seem to be in the grasp of the conventional cognitive robotics. That
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is, whether a suitable combination of a computationally driven robotic de-
vice with a biological body can achieve a true understanding denied to its
electromechanical, Turing-machine driven, cousins by the CRA.

In order to entertain such a possibility it is important though to delineate
which of the types of systems outlined above might be good candidates for
such consideration. It seems clear that such systems divide along the fault-
line defined by “who is in charge” - they can be either ‘sentient being’ - driven
(these include prostheses, implants, BMI, BCI), or driven by ‘formal systems’.
Extant animats fall into the latter category.

Of the hybrid advancements, the ones where the overall control of the
system rests with the sentient agent are not really addressing the problem
at hand. This is because any form of understanding claimed by the hybrid
system would quite clearly be enabled via bootstrapping the sentient being’s
‘understanding’. Conversely the problem we wish to consider is whether a
formal system with a form of biological embodiment that is not afforded by
standard and recent cognitive robotics systems circumvents the CRA objec-
tions. It thus follows that out of the advancements overviewed above the
animats provide a platform that is a serious contender for such a position.

4.1 Animats

Recently, one of the co-authors, with a team from University of Reading,
developed an autonomous robot (aka ‘animat’) controlled by cultures of living
neural cells, which in turn are directly coupled to the robot’s actuators and
sensory inputs[56]. Such devices come a step closer to the physical realisation
of the well known ’brain in a vat’ thought experiment11.

The ‘brain’ of the system consisted of a cultured network of thousands of
neurons. The cultures are created by first removing any existing structure
from cortical tissue of foetal rats and then seeding the resulting suspension
containing neuron bodies on a plate and providing suitable nutrients. The
plate has an array of 8x8 electrodes embedded at the base (a multi-electrode
array (MEA)), which provide a bi-directional electrical interface to the cul-
tures via appropriate hardware.

Within a short time after seeding, the neurons spontaneously begin to form
new connections between each other and henceforth start engaging in com-
munication. Given the right culture medium containing nutrients, growth
hormones, and antibiotics, a culture tends to develop within a day into a
monolayer with a dense network of connections, and within a week it starts
to produce spontaneous activity in the form of single action potentials. The
activity intensifies over the subsequent weeks developing into bursts of activ-
ity across the entire culture, which continue until culture maturation (ca 1
month since seeding).
11 For movie of an animat see www.youtube.com/watch?v=1-0eZytv6Qk

www.youtube.com/watch?v=1-0eZytv6Qk
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Thus, MEAs allow for monitoring of an electrical activity of entire cultures
as well as for their electrical stimulation via electrodes. This ability of bi-
directional communication enabled creation of closed-loop systems between
physical, and simulated, mobile robotic platforms and cultured networks. At
Reading we used an off the shelf robotic platform (Miabot; Merlin Robotics,
UK), because of its simplicity, accuracy of motor command encoding and
speeds suitable for movement in an enclosed, custom built robot pen.

The created system was modular and consisted of several hardware and
software modules including a robot (hardware or simulation), an MEA and
its recording and stimulation hardware and software, a computer worksta-
tion for conducting on the fly machine learning analysis of recorded culture
activity and extracting pertinent features of neural activity, another worksta-
tion for controlling the robot and delivering commands to robot actuators.
The resulting signals from the robot ultrasonic sensors were translated into
stimulation signals received by the culture and all the different modules were
linked into an overall closed-loop system via a TCP/IP protocol.

Cultures used in our studies consisted of tens of thousands of neurons and
showed complex, seemingly random pattern of connectivity and resulting ac-
tivity. However, further study of the activity of our cultures has demonstrated
functional basic excitatory (glutamate) and inhibitory (GABA) synapses,
whose effect on the culture activity was consistent with that observed in vivo.
Moreover, we also observed the presence of functional cholinergic synapses,
both nicotinic and muscarinic, as well as presence of cholinergic neurons[21].
Both effects and developmental changes of such cholinergic system have been
consistent with those reported in in vivo studies.

In an intact brain cholinergic input from subcortical structures innervates
diffusively cerebral mantle. Combined with the very specific positioning of
cholinergic synapses in local cortical circuitry, this results in coordinated
changes in the mode of activity of the cortex in response to changes in the
concentration of acetylcholine. This is one of the reasons why the choliner-
gic system has been implicated by many neuroscientists in such important
cognitive functions as working memory, learning and attention[8, 22, 23].
The presence of functional cholinergic system in our cultures suggests that,
in principle, they posses the biophysical capacity to support such cognitive
functions in suitably embedded cultures.

This is further corroborated by studies of the functional organisation of
cultures from our laboratory, as well as those obtained at Steve Potter’s lab at
Georgia Tech. These results show the development of functional connectivity
from initially random to one exhibiting hallmarks of ‘small world’ networks,
similarly to the functional connectivity observed in cortical networks[15, 48].
As functional connectivity is believed to reflect the organisation of a complex
system, such as the brain, in ways mirroring its computational properties[49],
such similarity indicates that functionally the cultures have the potential to
support a range of information processing tasks performed by the cortex in
vivo. Similarly, the presence of metastable states, which we have identified
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in such cultures, have been widely suggested, on the basis of numerous an-
imal experiments, to support cognitive processing ranging from perceptual
differentiation, through working memory[58].

Although, consistently with other groups doing research on animats, our
platform - analogous to a simple Braitenberg vehicle - has shown relatively
simple behaviours in the form of obstacle avoidance[56], nevertheless, in terms
of complexity, including the number of neurons, their functional connectivity,
their computational and biophysical properties etc., showed the capacity for
supporting information processing functions observed in intact brains.

Moreover, cultured networks analogous to ours have been shown to re-
spond to open loop conditioning, suggesting that the biological mechanisms
present in them can also support plasticity and learning[28, 47]. One of the
most interesting of such experiments was performed by Steve Potter’s group,
which performed a closed loop conditioning of an animat, in which the choice
of stimulation patterns was a function of animat behaviour gradually leading
to the animat settling on a desired behaviour, (following prespecified direc-
tion in this case[1]). This demonstrates that, in principle, such closed loop
conditioning can be used to achieve any form of association and henceforth
can be incorporated in training an animat to perform much more complex
tasks.

Given the above results obtained in ours and other labs, it is not so ob-
vious that the potential of ’animat’ devices (for example, to behave with all
the flexibility and insight of intelligent natural systems) is as constrained by
the standard a priori arguments purporting to limit the power of (the merely
Turing machine controlled) robots highlighted earlier. Surely, animats go way
beyond conventional robots controlled by computers (i.e. virtually all cogni-
tive robotic systems of today) if not yet in computational or behavioural
sophistication, then certainly in their hybrid mechano-biological makeup and
non-computational capacity.

Because the tasks the animats perform are actually achieved by embodied
’biological nervous system’, they appear to be the best candidates to assuage
the concerns of those who, in words of Andy Clark, “... fear that the embodied
mind is just the disembodied mind with wheels on”[9]. It seems feasible that
as the animat system grows in complexity and their performance becomes
more autonomous and sophisticated, the powers of the embodied neural sys-
tems will eventually allow them to achieve some form of intentional behaviour,
acquiring them status of sentient beings along the way. In particular, forms
of closed loop conditioning, such as demonstrated in[1], could be used to
train the animat such that the culture would produce patterns of activity
that would amount to appropriate manipulation of Chinese symbols, if such
were presented to the appropriate sensors. The resultant neural activity could
easily be mapped back onto appropriate animat responses, as if the system
could answer questions in Chinese with understanding.
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5 Zombie Rodent - An Ultimate Embodiment

In spite of the animat’s obvious advance on completely lifeless robotic sys-
tems, the first objection to a specter of a sentient animat could be levelled
using recent arguments from the enactivist camp. In a paper from 2011, Cos-
melli and Thompson have discussed at great lengths the limitations of ’brain
in a vat’ setting[11],

Suppose that a team of neurosurgeons and bioengineers were able to remove
your brain from your body, suspend it in a life-sustaining vat of liquid nutri-
ents, and connect its neurons and nerve terminals by wires to a supercomputer
that would stimulate it with electrical impulses exactly like those it normally
receives when embodied.

Although their imagined setup differed from an animat in that the brain in
their gedankenexperiment has been embodied virtually in a simulation by
a supercomputer providing appropriate inputs, nevertheless in congruence
with the thought experiment an animat also enjoys the presence of biolog-
ical nervous system and a compatible ‘envatment’. Nevertheless we believe
that even such systems cannot really possess intentionality for two primary
reasons. First, the objections raised by Cosmelli and Thompson with respect
to their thought experiment envatment apply equally to the robotic embod-
iment present in animat. This is because an animat, with all the standard
robotic embodiment augmented by the MEA experimental hardware geared
towards providing cultures with environment appropriate for their long term
survival and function, amounts more to Cosmelli’s and Thompson envatment
than true embodiment. For the envatment to count as a true embodiment it,
in their own words,

.. would need to be a surrogate body subject to control by the brain. By ’body’
we mean a self-regulating system comprising its own internal, homeodynamic
processes and capable of of sensorimotor coupling with the outside world.

We agree with Cosmelli and Thompson that, in spite of the superiority of the
physical embodiment over simulation, which parallels the difference between
simulated and physical robots emphatically stressed by all self-respecting
roboticists, even animat embodiment is too impoverished to provide anything
more than some form of sensory motor coupling which, as we tried to argue
consistently with Cosmelli and Thompson, seems necessary but not sufficient
to account for intentional states.

Second, we will argue in the reminder of this section that the lack of a
proper embodiment is only a part of the problem; the other equally impor-
tant deficiency of animats is the mechanistic implementation of their condi-
tioning; as long as the processing is following externally imposed constraints,
which are arbitrary from the perspective of ’the brains’ biology, there is little
chance of the system developing true intentionality. This line of argument
will ultimately extend the power of the Chinese Room argument towards
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properly embodied systems, which nevertheless base their functioning on for-
mal mechanistic and externally driven operations.

The implant technology has advanced beyond creating artificial augmen-
tation of sensory or even cognitive systems. The scientists have tapped into
the biological structures in order to induce in the intact living animals spe-
cific desired behaviours. These developments offer the possibility of using
the operant conditioning and inducing the behaviours in a way analogous to
robotic systems, in animals with an otherwise fully intact body. From the
perspective of our discussion, this offers a possibility of creating an ultimate
embodiment - a system with fully functional biological body, equipped with
functional brain and the normal sensory motor coupling, which nevertheless
could be driven [via suitable conditioning] to perform specified associations
(e.g. Turing style symbol manipulations).

For example, John Chapin and his group inserted an electrode in the
medial forebrain bundle (MBF) in a rat’s brain[51]. The MBF is believed
to be involved in a biological reward system and in generation of plea-
surable feelings, which is corroborated by behavioural animal intracranial
self-stimulation (ICSS) studies, as well as human subjects reports. Other
electrodes were inserted in cortical areas processing information arriving from
animal’s whiskers. This setup enabled Chapin’s group to use operant condi-
tioning in order to train the rat to respond with appropriate turns to stimu-
lation of corresponding whisker areas.

Several days of training taught the animal to start turning according to
remote signals without the MFB stimulation, as a remotely controlled robot
would. The animals could be steered to navigate through different environ-
ments12 or perform even more complex tasks, such as climbing, although they
would not perform tasks which they perceived as ‘dangerous’.

The fundamental condition for the success of such training is that for it to
work, the experimenter must treat the animal as a sentient being - he must
employ the natural desires and goal seeking of an autonomous biological agent
and must do so by tapping into the biological machinery responsible for such
behaviours. Another, equally important, condition for the success is that in
order for the animal to want to follow the training (for the conditioning to
take place), it must be able to discriminate consciously the options so that
it can form the associations between the target options and reward.

These conditions may seem limiting from the perspective of our discussion
on, both, fundamental and pragmatic grounds. First and foremost, employing
an existing sentient being’s teleological behaviour and conscious discrimina-
tion creates the dangerous possibility that the animal could learn to map the
imposed associations on its own intentional interpretations and hence could
bootstrap its own (rat-level) intentionality onto the formal Turing style sym-
bol manipulation artificially imposed on it. Secondly and more pragmatically,
electrodes do not provide sufficient discrimination in delivering stimuli to the
12 See movie of a guided robot at www.youtube.com/watch?v=D5u2IWFNFDE

www.youtube.com/watch?v=D5u2IWFNFDE
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appropriate targets, hence the possibility of generating complex conditioning
responses and rich patterns of co-activations that may be necessary for even
the most rudimentary forms of cognition might not be possible using such
technologies.

However, in recent years, an exciting technique called optogenetics has
come to the fore. Optogenetics can provide a sublimely refined levels of con-
trol of brain microcircuitry and can henceforth address, at least in principle,
both caveats. Optogenetics is in a broad sense a combination of optics, ge-
netics and molecular neuroscience[13]. It uses viral vectors in order to target
specific neuron types and make them express light-sensitive proteins identi-
fied in algae or bacteria. As these ’opsins’ act as ion pumps or channels when
activated by light of specific wavelengths, neurons that express them can be
specifically and temporally precisely activated or inhibited by laser.

Using optogenetic technology it is possible to make different cell types ex-
press different opsins and hence to induce a very precise spatial and temporal
patterns of activations and inhibition in the treated tissue. Optogenetics of-
fers the level of spatiotemporal control of manipulation of neural networks
activity both in vitro and in vivo not afforded by traditional chemical or even
electric stimulation, thus it presents the possibility to probe, and also to con-
trol very precisely, individual targets in order to investigate and manipulate
their function.

Such technology was used in a recent study that demonstrated possibility
to perform operant conditioning on a mouse. When the animal, expressing ac-
tivating opsin in parts of the brain involved in reward system (amygdala and
the nucleus accumbens), performed a target ecologically neutral response,
the researchers shone light into its brain, activating neurons, axons of which
formed the path between the two brain regions,[50]. In those animals in which
they transfected the same pathway with opsins that would block the activ-
ity in response to light, scientists were also able to use light to stop mice
exhibiting a previously conditioned response to a relevant cue.

Although their scientific objectives and experimental technologies were
quite different, the experiments performed in[50, 51] both obtained desired
responses tapping into a creatures volitional systems, effectively manufactur-
ing wilful behaviours consistent with those required by the experimenters.
Thus, although both - from our perspective - are subject to the first limiting
condition mentioned above, however the experiments performed by Stuber
and his colleagues demonstrate the potential level of specificity and tempo-
ral precision of stimulations that may be necessary to induce very specific
patterns of responses, thus addressing the second, pragmatic limitation high-
lighted above.

Essentially the same optogenetic techniques were used by Deiserroth
group[20], which led to driving a rodent’s response in a way not dependent
on its willful behaviours or conditioning. The freely moving mouse exploring
its surroundings started to move in a very unnatural way, turning consis-
tently left-wise upon commencement of optical stimulation of the right motor
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cortex. The behaviour returned to normal willful exploratory behaviour as
soon as the stimulation was turned off13.

5.1 From Intuition Pump to Physical Realisation of
Thought Experiment

Experiments such as the ones reported above, although conducted with
completely different and legitimate research questions in mind, open up a
possibility of creating a zombie mouse, in which its behaviour is based on
mechanistically developed patterns of activations of brain structures and not
related to animal wilful behaviour or conscious perception, as attested by the
stark contrast between the artificial behaviour of the animal while under the
stimulation and when it is freely behaving (the stimulation is off).

In principle, such optogenetic techniques can be used to deliver very pre-
cise control of neural structures in real time with millisecond precision and
in closed loop fashion, where optical control is a function of observed neural
activity and the resultant behaviours; for example, in conditioning experi-
ments such as those performed by Potter’s group on neural cultures[1]. They
could be used to achieve desired behaviours in animats or indeed in animals,
where the associated patterns of activity need not rely on animal wilful be-
haviour, thus addressing the first, fundamental limitation mentioned above.
Thus, such an animal’s brain could be conditioned, upon pattern of activa-
tion corresponding to Chinese characters input, to go through a sequence of
neural activation patterns resulting in the little murine squeaking a perfectly
appropriate response in Chinese (well, not really, but it could produce instead
a sequence of lever presses corresponding to such a response)14.

However, upon inspection of the behaviours of the Deiserroth mouse from
the experiments reported in[20], it seems obvious that they are alien to the
animal. There is nothing in the animal’s intrinsic makeup that would cause it
to behave in this way out of its own accord, and it is extremely unlikely that it
would ever acquire any intentionality of such externally imposed behaviours.

This is in spite of the fact that the creature would be equipped, by nature,
with perfect embodiment and, by experimenter, with artificial sensory-motor
couplings resulting in it experiencing the world consistent with induced ac-
tions. However, these induced couplings would not be the effect of the intrinsic
animal needs (metabolic or otherwise) at any level; to the contrary, they are
the cause of metabolic demands. As the animal would be driven, this would
cause sequences of sensory-motor couplings, hence it would be the experi-
menter that would drive these metabolic demands in an arbitrary way (from
the perspective of metabolic needs of animal or its cellular constituents) thus
13 See movies of experimental animal at www.youtube.com/watch?v=88TVQZUfYGw
14 Selmer Bringsjord proposed a thought experiment surgery on Searle in[6] that

was similar in spirit to our zombie mouse; we believe though that at the end of
both experiments our zombie mouse would be better off than Searle.

www.youtube.com/watch?v=88TVQZUfYGw
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the casual relationship between the bodily milieu and the motor actions and
sensory readings would be disrupted. However, it is the right type of such
couplings and their directionality that ultimately leads to intentionality ac-
cording the enactive approach.

Hence we do not expect that such a ‘zombie mouse’ would acquire any form
of understanding of the presented Chinese story. A fortiori, if such formal rule-
book following does not lead a sentient being to acquire an understanding,
we do not expect that the analogously trained animat with its impoverished
envatment for a body, will be any luckier in this respect.

6 Conclusions

This paper argued that neither zombie mice nor animats will escape Searle’s
CRA, which we suggest continues to have force against claims of their symbol-
grounding, understanding and intentionality.

Similar objections towards embodied AI have been put forward in[18, 19],
however, their discussion is limited to traditional robotic systems. Our paper
extends this line of argument towards hybrid systems, or even systems with
fully functional body, which are driven by formal computational rules.

A zombie mouse was used as a vehicle for demonstrating that it is not a
‘trivial’ matter of providing an appropriate embodiment for effectively Tur-
ing Machine style operations that could account for emergence of meaning,
grounding and teleology. Furthermore, we believe our zombie mouse argu-
ment also demonstrates that if the mechanistic account is not consistent
with the low level embodiment (as was the case for zombie mouse - the infor-
mation processing imposed on it is external and arbitrary with respect to the
properties of the ‘machinery’ [the brain and the organism] in which it is im-
plemented), then the result is exactly that - a zombie - with no understanding
or ownership of the actions imposed on it.

We suggest that what body provides goes over and above what
robotic/artificial embodiments can offer: in the right conditions both the
natural body and artificial embodiments are a source of correlations of ac-
tivations of different brain areas caused by different dimensions of real ob-
jects/world. As we tried to articulate in this paper, such correlations are
important, they may be even necessary, but they do not seem to be sufficient
for meaning to arise and this seems to hold true as much for fully artificial
system as for those that blend the artificial and biological components.

Finally, we do not wish to appear as providing a wholesale criticism of cog-
nitive robotics. Indeed, we believe that this area offers very fertile grounds for
creating experimental platforms for testing information processing aspects of
embodied cognitive processing[32]. However, we do remain sceptical whether
such systems or their hybrid mechano-biological extensions of late, driven by
mechanical formal computational rules are able to answer the most funda-
mental questions about the nature of intelligence and cognition. In order to
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achieve such a breakthrough the embodied systems yet to be developed will
have to seriously take the body into account.
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Generative Artificial Intelligence

Tijn van der Zant, Matthijs Kouw, and Lambert Schomaker

Abstract. The closed systems of contemporary Artificial Intelligence do not seem
to lead to intelligent machines in the near future. What is needed are open-ended
systems with non-linear properties in order to create interesting properties for the
scaffolding of an artificial mind. Using post-structuralistic theories of possibility
spaces combined with neo-cybernetic mechanisms such as feedback allows to ac-
tively manipulate the phase space of possibilities. This is the field of Generative Ar-
tificial Intelligence and it is implementing mechanisms and setting up experiments
with the goal of the creation of open-ended systems. It sidesteps the traditional ar-
gumentation of top-down versus bottom-up by using both mechanisms. Bottom-up
procedures are used to generate possibility spaces and top-down methods sort out
the structures that are functioning the worst. Top-down mechanisms can be the en-
vironment, but also humans who steer the development processes.

1 Introduction

The field of Artificial Intelligence has not yet seen an unifying theory that captures
the fundamentals for the creation of intelligent machines. Since its conception at
the Dartmouth conference in 1956 at least three paradigms have permeated its ex-
istence. The top-down paradigm was supposed to be for the creation of models of
the mind and eventually led to different types of logic and reasoning and later also
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sub-symbolic processing. The second paradigm focussed on the creation of intelli-
gent machines (robots). Many scientist used introspection of their own mind as a
tools for the creation of these machines which was challenged in 1969 [28] using
theories of biosemiotics, which is the interpretation of (sensory) signals in biolog-
ical systems. This led to the bottom-up, behavior-based robotics [6]. The third, but
mostly forgotten, paradigm is the field of cybernetics, , which was already being in-
vestigated when the Dartmouth conference was being held. Before the conference,
in 1950, an article in the Scientific American showed two robots which consisted
out of a few vacuum tubes, control loops and feedback mechanisms [16]. The field
of cybernetics could be defined as: ’The theoretical study of communication and
control processes in biological, mechanical, and electronic systems, especially the
comparison of these processes in biological and artificial systems.’1 The division in
the field of Artificial Intelligence cannot be accepted as the answer to the question of
how to build intelligent machines. An integrated perspective is necessary. The field
of neo-cybernetics tries to bridge the gaps in AI with an extra addition: The property
of emergence. It is unknown whether neo-cybernetics is also sufficient. What is it to
study Artificial Intelligence if there is not even a common denominator within the
field? The entry chosen in this article toward the creation of intelligent machines
is a post-structuralist approach based on the dynamical aspects of non-linear sys-
tems. It seems that neo-cybernetics and post-structuralism meet each other in non-
linear dynamical systems theory and can assist each other. Cybernetics requires the
deeper underpinnings of post-structuralism, and post-structuralism can proof itself
using intelligent machines based on neo-cybernetic mechanisms. This symbiosis is
dubbed: Generative Artificial Intelligence [31]. In Generative AI (GAI) the possibil-
ity spaces of post-structuralism are actively being manipulated using neo-cybernetic
mechanisms in order to scaffold the minds of intelligent machines.

2 Virtual-Actual

In Deleuzes actual-virtual distinction, the virtual is not so much a possible but rather
fully real, waiting to be actualized. The actual is not the point of departure of change
and difference, but that which has been effected from potentiality, or, the virtual [12].
This notion of the virtual allows Deleuze to describe the modal relation of potential-
ity against the actuality of complex systems. Thus, the virtual allows Deleuze to talk
about phase spaces of systems and the patterns and thresholds that characterize their
behavior. To do so, Deleuze refers to multiplicities, a term he uses to treat the mul-
tiple in itself as a substantive, rather than an attribute of substance. The realm of the
virtual, also described as the plane of consistency [13] is populated by multiplicities,
which provide the virtual pattern or structure of morphogenetic processes that ac-
tualize bodies, assemblages, and strata. DeLanda [11] uses Deleuzes actual-virtual
distinction to propose a new agenda for science and philosophy. DeLanda wishes to
provide scientific explanations of emergence: processes where novel properties and
capacities emerge from a causal interaction [11]. Whereas science was previously

1 From: http://www.answers.com/topic/cybernetics
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preoccupied with simple laws acting as self-evident truths (axioms) from which
all causal effects could be deduced as theorems Today a scientific explanation is
identified not with some logical operation, but with the more creative endeavor of
elucidating the mechanisms that produce a given effect. [11] To describe emergence,
DeLanda deploys a conceptual apparatus that that consists of emergent properties,
capacities, and tendencies. The sharpness of a knife is an example of an emergent
property. The shape of the cross-section of the knife makes up its sharpness, which
requires the knifes metallic atoms to be arranged in such a manner that they form
a triangular shape. Sharpness features emergence since individual metallic atoms
cannot produce the required triangular shape. What is more, sharpness provides the
knife with the capacity to cut things. However, this capacity remains potential with-
out a relational event, in this case an encounter with something that has the capacity
to be cut by the knife. Similarly, the metallic atoms of the knife must have the ca-
pacity to be arranged in such a manner that sharpness emerges. Finally, the knifes
blade may have the tendency to liquefy if certain conditions change, for instance
in case its environment exceeds a particular temperature. Like capacities, tenden-
cies are closely related to relational events (e.g. rising temperatures), but also to
emergent properties since the metallic atoms of the knife need to interact in such a
manner that the blade melts, something individual atoms cannot do. Whereas ten-
dencies can be enumerated (e.g. the states in which a particular material can be,
such as solid, liquid, or gaseous), capacities are not necessarily finite due to their
dependence on being affected and / or affecting innumerable other entities. In such
events, DeLanda argues in Deleuzian fashion, capacities and tendencies become ac-
tual, but neither tendencies nor capacities must be actual in order to be real. [11]
Here DeLanda draws upon Deleuzes actual-virtual distinction, which allows him to
ascribe reality to the virtual rather than brushing it off as a mere possible that lacks
reality.

2.1 Flat Ontologies and the Machinic Phylum

A wide variety of systems can be described in terms of virtual potentialities and ac-
tualizations thereof. DeLanda [11] describes a wide variety of systems ranging from
meteorological phenomena and insect intelligence to early human civilizations and
stone age economics in terms of their emergent properties, capacities, and tenden-
cies, which constitute a structure of the space of possibilities [11] that can be ex-
plored by means of computer simulations. Explanations of these different systems
may builds upon explanations of lower hierarchies in a process called bootstrap-
ping: a realist ontology may be lifted by its own bootstraps by assuming a minimum
of objective knowledge to get the process going and then accounting for the rest.
[10] The structures of spaces of possibilities have an objective existence [11] that
can be investigated mathematically by the imposition of an arrangement through
formalization or parametrizing. [11] Computer simulations enable exploration by
allowing experimenters to stage interactions between different entities and investi-
gate the emergent wholes that are the result of these interactions, thereby gaining an
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understanding of mechanisms of emergence. Philosophy can fulfil the role of syn-
thesizing simulation-enabled insights into an emergent materialist world view that
finally does justice to the creative powers of matter and energy. [11] In the afore-
mentioned process of bootstrapping, DeLanda wishes to avoid the postulation of
general entities (ideal types, eternal laws), since for a realist whose goal is to create
a mind-independent ontology, the starting point must be those areas of the world
that may be thought of as having existed prior to the emergence of humanity on
this planet. (DeLanda 2009, 28) Here DeLanda aligns himself with contemporary
critiques of correlationism the idea according to which we only ever have access
to the correlation between thinking and being, and never to either term considered
apart from the other. [20] By focusing on mechanisms of emergence, science now
has the ability to describe [w]holes the identity of which is determined historically
by the processes that initiated and sustain the interactions between their parts. [11]
Concepts that do not elucidate sequences of events that produce emergent effects are
considered irrelevant for scientific analyses. Philosophy emerges renewed, banished
of reified generalities like Life, Mind, and Deity. (Ibid.) This desire to rid scientific
explanations of reified generalities relates closely to the refutation of typological
thinking advanced by Deleuze and Guattari [13]. Typological thinking implies that
individuals are defined in terms of the species they belong to. Deleuze and Guattari
argue that the members of species are not so much defined by essential traits, but
by similarities in morphogenetic processes. The individual is the condition for the
emergence of species, rather than vice versa. One cannot identify a species without
referring to the individuals that constitute it, and the changes these individuals go
through cannot be explained through the limitations put on them by the species they
are said to belong to. Such imposed limits are merely restrictions of what the pro-
cesses of becoming that characterize individuals, which forces them into neatly fit-
ted categories. Deleuze and Guattari describe interacting parts (machinic elements,
and emergent wholes (nomadic spaces drawn up by interacting machinic elements).
These wholes may deliver assemblages that exist in a different spatio-temporal time
scale when compared to their constituent parts (i.e. organisms, families, govern-
ments, nations, etc.), but they do not have a different ontological status compared to
their elements [9] Similarly, researchers working in the field of complexity science
explain how systems attain higher levels of complexity without relying on external
organizing agents.DeLanda defines ontologies committed to the quirks and whims
of individuals and their processes of becoming as flat ontologies, which can be re-
lated to Deleuze and Guattaris machinic philosophy. Such flat ontologies cannot be
overcoded in dimensions supplementary to their own. Deleuze and Guattari [13]
speak of a machinic phylum as a set of self-ordering material processes inherent in
material, which enables emergent effects. There are in fact several phyla that tap into
the self-ordering forces of material. These phyla are effectuated by assemblages,
which are actualizations of the virtual (Ibid.). Machinic phyla may be explored by
what Deleuze and Guattari identify as artisans, who follow the traits of materials
and thereby actualize new assemblages [13]. Artisanal production relies on natural
processes and the activities of the aforementioned artisans, which makes the ma-
chinic phylym as much artificial as natural: it is like the unity of human beings and
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Nature. [13] The process of stratification by which assemblages are actualized from
the machinic phylum can be found in areas as different as geology, biology, metal-
lurgy, and social strata. Thus, the flat ontologies and machinic phylum of Deleuze
and Guattari enable the study of processes of actualization in a variety of domains.

2.2 Minor Science and Royal Science

For DeLanda, science need not neutralize the intensive or differentiating properties
of the virtual, much like his mentors Deleuze and Guattari argued. In this sense,
he has much to offer constructivist debates since his work attempts to provide both
an ontological and epistemological alternative to philosophies of science based on
axiomatic systems, deductive logic, and essentialist typologies, one that is grounded
in creative experiment rather than theory, in the multiplication of models rather than
the formulation of universal laws. [3] However, unlike his mentors, DeLanda grants
a particularly authoritative role to science in enabling a rigorous ontology of the
virtual. A sense of ontological completion takes root in DeLandas work over the
course of his various publications: from a more speculative alternative history pro-
duced by a robot historian [8], via the erudite exploration of the ability of science to
engage intensities [9], to his latest book that exerts a confidence in the exploratory
potential of computer simulations [11]. However, the rigorous approaches to the
virtual enabled by the flat ontologies and machinic phylum of Deleuze and Guattari
should not be approached in teleological terms, or a way to provide more robust
criteria to evaluate scientific progress. Deleuze and Guattari emphasize the impor-
tance of what they call minor science [13], which is the kind of science deployed
in artisanal production, as outlined above. Minor science works by pushing systems
to their intensive states in order to follow traits (indications of ’forces’, that is, sin-
gularities or self-ordering capacities) in material to reveal their virtual structures or
multiplicities. [4] The difference between minor science and Royal science,

Refers only to a differential in the rhythm and scope of the actual-virtual system From
our own historically specific point of view, some terms and concepts will necessarily
appear more adequate to the task than others. Science does not describe an objective
state of affairs so much as inscribe a more or less mobile point of view within things
themselves, causing a plurality of worlds to emerge from the virtual state of flux. [15]

Science produces more and less robust explanations, whose objectivity concerns a
coalescence of relations at a particular point in time. However, the virtual always
exceeds the scientific gaze and will continue to haunt the scientific observer: sci-
ence thus makes a leap into ontology simply by bringing its own laws and prin-
ciples into contact with the problem the chaos that haunts it thereby facilitating
and allowing itself to be swept away by the movement of becoming. [15] What is
more, scientific explanations intervene in the movement of becoming of the virtual
on the basis of the socio-technical conditions of the scientific enterprise. A more
thorough emphasis on data-driven methods will need to continuously tap into the
force of the virtual as described by Deleuze and Guattari. In the phase-space of vir-
tual exist abstract machines that are so powerful that they form the base of many
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of the living structures we see around on. This article tries to describe (a part of)
perhaps the most important one, the one that creates thinking matter. The basics
of this abstract machine consist of the following: There are self-maintaining genera-
tive mechanisms that create structures, these structures interact with an environment
that selects on this process. Usually there are many (as in millions or billions) of the
generative mechanisms with variations between them. Sometime these mechanisms
form meshworks of interacting components, and some of these meshworks become
generators themselves where (other) with other selection mechanisms, ad infinitum.
This describes many processes in living organisms. Some examples are the follow-
ing. Often animals and plants spawn a wealth of offspring (tens of thousands or even
millions), the environment deletes the worst ones and the unlucky ones and the few
that remain can become the next that generate offspring. Some plants/animals form
interacting meshworks which can be in many forms such as feeding on each other,
symbiotic relations, collaborations, sacrifice for the genes, . . . Another example is
the neurogenesis of the hominid brain. Around birth half of the neurons destruct
themselves. First many neurons are created, and then the worst ones are selected
against. During the first three years of the human infant many neurons have an axon
battle, where the amount of axons is reduced from approximately 6 to exactly 1.
Again, this is a generative mechanism (create many axons) followed by a selection
mechanism (destroy the ones with the least amount of working connections). The
same happens around puberty with the synaptogenesis of the dendrites, where many
connections are formed in the beginning, only to be followed by almost a decade
of the pruning of the synapses. In neurology these processes are called progressive
and regressive processes [14]. It is the fundamental nature of these two processes,
not their implementation, that Generative AI is discussing. Actual implementations
will most likely not resemble the biological mechanisms created by the known pro-
cess of biological evolution. It is the way in which the abstract machines operate
and are implemented that bootstraps the emergence of an intelligent sub system and
determines how well it operates in its environment. There is ample proof that this
abstract and generative machine, if reasonably well implemented, can lead to rather
flexible implementations that can operate in many different environment and handle
themselves in many different situations, as exemplified by the emergence of humans
during the course of biological evolution.

3 Closed and Open Systems in Artificial Intelligence

Systems in the field of Artificial Intelligence tend to be closed. As far as the authors
know, all systems in AI are closed systems. These closed systems do not allow
new properties to emerge. If there is flexibility at all, it only leads to a solution
that the creator wanted the machine to find. This implies that for every problem a
human has to create a new solution. This way of working will probably not lead
to intelligent machines on a human-level time scale since for every little problem
someone has to create a solution in the form of software. Only open-ended systems
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systems [25] display interesting properties such as self-organizing and emergence
[17], [32], which are required for the scaffolding of the mind [7]. Clark states:

. . . the old puzzle, the mind-body problem, really involves a hidden third party. It is
the mind-body scaffolding problem. It is the problem of understanding how human
thought and reason is born out of looping interactions between material brain, material
bodies, and complex cultural and technological environments.

This scaffolding of the mind is what we need for the creation of intelligent ma-
chines. Without automated procedures and mechanisms that can grow, diversify and
transform, humans will still be required for the creation of AI. Generative Artificial
Intelligence defines itself as the field of science which studies the (fully) automated
construction of intelligence. This is in contrast to contemporary AI, which studies
the understanding and construction of intelligence by humans. The hidden variable
is often that is requires many man-hours of work to create even the simplest solu-
tions. What is needed for the creation of intelligent machines are automated genera-
tive methods that can be steered by humans, instead of every detail being created by
humans. It is not clear what these procedures will be exactly, but the first glimpses
has been seen in research that turn the usual methodology up-side-down. AI sys-
tems usually try to limit the search space of possible solutions. By doing so they
also limit the possibilities of anything new arising. The closed systems from AI suf-
fer from the problem that they all follow the same methodology, namely: Input →
Process → Output (IPO). After the output the system halts, or waits for a new in-
put. Such an IPO system will not get the needed diversity of inputs needed to find
singularities in the phase space of solutions. For example, if a system is only using
visual input and no tactile information, then these inputs will not increase the possi-
bility of a learning algorithm to find the connection between hitting an object with
a manipulator and seeing the object move. If on the other hand tactile information
is added, then this extra amount of information flow through the system will create
an extra singularity where all this information is combined. So instead of lowering
the chance that a machine learning algorithm can find the connection because of
the increase of information in the input space as is usually thought, it actually in-
creases the probability of finding a solution due to an extra singularity that solves the
problem. In Generative AI is it important to create generative methods that create
possible solutions to problems that the machine encounters while interacting with
its environment. Figure 1 give a graphical representation of the movements through
a phase space. These generative methods can be implemented using software, as
will be explained in the next section, but can also be due to the configuration of
the machine itself, as in the previous example. The machine has sorting methods
to filter out the worst solutions, and generates new solutions continuously using the
best ones it has so far. The sorting machines can be manually created by humans, as
in the case of Genetic Programming [18], but this would not lead to an open-ended
method. Only if the machine has the opportunity to also create sorting mechanisms,
partially due to pre-programmed predispositions and partially steered by its inter-
action with the environment (nature vs. nurture), it will be capable of displaying
interesting emergent properties.
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Fig. 1 Classical AI and Generative AI: In Classical AI (left figure) there is often an optimiza-
tion toward some end-state and (preferably) the outcome is predictable. In both the training
and the execution phase this system can be classified as: Input → Process → Output. The
’Process’ part is an implemented model (hand-crafted or learned). The left figure is in a sta-
ble equilibrium. In Generative AI (right figure), the path followed through the phase space
depends on the internal dynamics of the system and the interactions with the environment.
The models are created and tested automatically. The creation process can be steered, but the
outcome is unpredictable to some extent. After uphill explorations, the system may drop into
a lower (better) energy state, with a solution which is qualitatively different from the preced-
ing state (cf. the transition of handwritten copying to book printing). There is no difference
between a training phase and an execution phase. The system learns while executing.

4 Experiments in Generative AI

4.1 Learning

Learning constitutes a core aspect of Generative Artificial Intelligence. Tradition-
ally, learning theories were strongly embedded in reasoning, argumentation and
overt cognition in general. Learning was assumed to take place in a categorical
world, were instances had categorical properties and newly learned insights may be
communicated by the learner using a narrative. Although this perspective on the cog-
nitive process of learning is cogent and recognizable from within ’common sense’,
the paradigm has produced only few examples of convincing machine learning.
Mentionable are the version-spaces symbolic learning model [21, 22] and alignment
based learning in grammar induction [1]. While symbolic and explicit, such models
are brittle and still far from the goal of explaining what they have learned in a natural
narrative. Instead of explicit learning, the successful models of contemporary artifi-
cial intelligence are implicit, akin to Polanyi’s [24] tacit knowledge: neural-network
models [2], hidden-Markov models [26], support-vector machines [5] and Bayesian
learning systems [27]. Although such models may either be analog or symbolic in
their responses, the underlying learning process assumes a continuous parameter
adaptation, either directly, as in the error back-propagation mechanism [29] for the
multi-layer perceptron, or indirectly, as a consequence of exemplar weighing which
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takes place in the support-vector machine. Computer vision, speech and handwrit-
ing recognition and robotic control systems are trained using ’analog’, numerical
rather than discrete, symbolic methods. Such learning mechanisms are functional
as well as adaptive and may ultimately lead to more complex models of artificial
intelligence that do exhibit the potential for a verbal expression of inner states.

4.2 Humans?

However, the largest stumbling block for such a revolution is the fact that current
machine-learning systems require a human researcher to provide a micro world
with constraints and performance criteria. Current machine-learning methods re-
quire sufficiently large data sets of examples of patterns with their corresponding
label or target responses to be produced in this micro world. The informed and
motivated researcher or engineer is ever present and is steering the experimenta-
tion/exploration in great detail. The gain factor in the dissipative process [25] that
takes place between the environment and the learning system is determined by an
out-of-equilibrium energy state (cf. ’adrenalin’) in the researcher him/herself, fur-
ther motivated by the thrill of public benchmark tests and the probability of obtain-
ing appreciation in the social context of scientific endeavor. This state of affairs is
extremely costly. It leads to isolated ’feats’ and successes, such as a particular type
of robot filling one particular instance of a glass with a particular amount of fluid.
However, the total process of wide exploration of the problem space needs to be
repeated by a new PhD researcher for each small variation on the task to be learned.
The total amount of costly human labor is massive and puts a ceiling on the level of
attainable results in artificial intelligence.

4.3 No Humans, Machines!

What is needed are models that make use of a highly active exchange process be-
tween learner and the environment, in such a way that the problem space is contin-
uously explored broadly, thanks to an autonomous and widely diverging bifurcation
of system states. Ideally, this process unrolls, devoid of human interference but in
any case requiring very little steering by humans. If the necessary input/output re-
lations are achieved, such a system should become ’bored’, i.e., divert its attention
to other corners in the problem space. Similarly, if a solution pathway fails to pro-
vide performance improvement for a prolonged period, this should trigger a large
jump to another location in the solution space, preferably with qualitatively differ-
ent solutions than those explored along the unfruitful path. Human labor is then
exchanged with another form of energy dissipation, e.g., in the form of the con-
temporary silicon-based von Neumann/Turing computer or a more advanced form
of massively parallel computation.In a GAI engine, all aspects of human heuristic
exploration will be replaced by autonomous mechanisms.
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Fig. 2 The best value for parameter p needs to be found by the learner. The solution for p
should have a low energy E. Is the global minimum (a) a good solution or is the value for
p at point (b) to be preferred? Intelligent learners ’know’ that the probability of solution (a)
being useful in unseen conditions is fairly low, while the smoothness of the energy bowl at (b)
gives high confidence that the value of Pb will not be very wrong in slightly varied problem
conditions in the future.

4.4 What Is Needed?

What is needed for generative AI is a broadening of the concept of parameter-
value search. For the solution of learning problems, usually a fitness criterion to
be maximized or an energy criterion to be minimized is determined in advance. In
the exploration of a high-dimensional parameter space, the criterion, say, energy E,
will vary. Good solutions have a low energy, bad solutions having high energy. If
the problem space is simple and idealized, the energy landscape would consist of
a multi-dimensional parabola, with a clear and clean singular minimum point. In
practice, however, such energy landscape are highly irregular, with many local min-
ima such that a simplistic Newton-Lagrange method for finding ’the’ solution is not
feasible. One solution has already been proposed to escape this predicament and
it has been widely successful. It consists of the assumption of noisy energy in the
learning system, such that the exploration haphazardly jumps out of local minima,
thereby increasing the probability that a deeper minimum or trough will be found.
When the amount of noise (’temperature’) is gradually decreased until the explo-
ration has become deterministic, the search process is more or less guaranteed to
find the deepest point. This mechanism is called simulated annealing [23] and its
convergence has been demonstrated by theoretical physicist Boltzmann. However,
this precursor of generative AI has three important limitations. First, a practical
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learner does not have the infinite time that is needed to achieve the theoretical min-
imum, i.e., best solution. Second, it is not always guaranteed that the deepest point
in the energy landscape corresponds to the best solution. Its location in parameter
space may be the consequence of lack of data. An example would be a needle-
shaped pit for which statistically it can be easily demonstrated that its exact position
will not be replicated in a slightly changed world. In fact, we see here that the
simplistic Newton-Lagrange heuristic: ”zero partial derivatives are good, because
horizontality indicates an extremum” is not enough. Not only do we want deep pits,
we also prefer solutions that are characterized by a flat smooth bowl rather than a
deep and steep energy ravine (Figure 2). The learner needs rich criteria in order to
determine that a ’sweet spot’ has been achieved, much the same as a bird would
asses a corner of the world to be an appropriate place for nesting, using a number of
criteria instead of one zero-crossing of the derivative along one dimension of appro-
priateness. This means that we would need a much more sophisticated mechanism
to evaluate the goodness of local solutions (read: hypotheses) than is currently the
case in such annealing systems. A well-known variant of stochastic learning con-
cerns the class of genetic algorithms[18]. Here, the exploration of problem space
is slightly more sophisticated in that multiple local solutions are explored in paral-
lel, and blind stochastic exploration is augmented with a ’reuse’ of partial solutions
during learning. The third flaw, however, is most important. These laboratory-based
learning systems assume that the process is completed once the minimum has been
found: It is a training process that is detached from the real environment and its
results are exported to the real world to enter the final phase in their life cycle, the
operational stage. The feedback process is severed. In no way do current learning
models tell us what other portions of the space are to be explored in anticipation of,
or in reaction to an ever changing world.

4.5 First Glimpses

In recent work, we have implemented a very large search engine for word search in
historical handwritten collections. This system, Monk [30], uses image processing
and pattern recognition to identify and rank word candidates from large collections
of books spanning several centuries. The diversity of writing styles requires train-
ing by human experts. However, it would be vastly expensive if a standard model
of experimental machine learning would be used. This would require at least one
PhD researcher per collection, with its particular image processing and handwriting
style peculiarities. The challenge is to obtain an autonomous engine that accepts
word labels of word images from users over internet, but learns independently, in a
continuous (’24 hours/7 days’) manner. While users are motivated to correct system
errors by providing labels, Monk detects where the friction is largest, either on the
basis of human activity in corners of the word space or on the basis of the internal
distance and probability measures indicating sub optimal solutions. A problem gen-
erator (the abbot) spawns sub tasks (novices) that execute a local word-learning or
ranking task. In a cooperation between man and machine, about 300 thousand word
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Fig. 3 Temporal evolution of the number of harvested word labels in the Monk system for
handwritten word search in a number of books, in a loglog curve. Learning is characterized
by growth spurts and flattening periods. The developing number of indexed words for one of
the books from the Cabinet of the Queen of the Dutch National Archive is highlighted as the
thick curve. The steep points in the curve are determined by the product of human effort and
word-recognition performance. The latter is realized thanks to the investment of electrical
energy (compute time on a high-performance cluster).

labels could be harvested. This process is ongoing. The continuity and the nature
of the problem generator guarantee that both local (down-hill) optimization and di-
versity (up-hill global exploration) are realized. Figure 3 shows the time course for
the number of harvested word labels for a number of historical books. This number
is increasing over time, but it is more important to notice the discontinuity of this
process. Although there may be underlying random fluctuations in both human and
machine effort in training the machine, there is a non-linear speedup as evidenced
by the upward jumps in the curves. If the handwriting classifier performs well on a
particular word, it becomes very easy for the human volunteers to label large sets
of instances as ’correct’. In a similar vein to the development of the guns, from
muskets and front-loaded rifles to automatic guns and the development of air planes
from the Wright plane up to modern fighter jets, there is, in Monk, a process where
energy is spent on friction points in the technology: words not recognized properly
elicit human irritation and subsequent efforts to smoothen the world, i.e., to create
order from chaos. In our view, the process is a nice example of ’tracking the ma-
chinic phylum’. While it is too early to call this learning model in the Monk system
a machine implementation of generative artificial intelligence by autonomous bifur-
cation processes, the results are exciting and indicative of a new way of tackling
traditional ’hard’ problems such as the recognition of ancient historical scripts.
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5 Concluding Remarks

The creation of intelligent machines requires more than the manual tinkering by
humans. This article discusses Generative Artificial Intelligence which combines
neo-cybernetics and the possibility spaces of post-structuralistic philosophy. By ac-
tual experiments we demonstrate how present day machine learning technology can
be applied to create generative systems where humans can steer the developmental
scaffolding of the machine. Using a profound understanding of non-linear dynami-
cal systems for the creation, and not only for the description, of intelligent systems
might lead us not only to a better understanding of how to create intelligent ma-
chines. It could lead to machines that can build their own intelligence.

References

1. Adriaans, P., van Zaanen, M.: Computational Grammar Induction for Linguists. Special
issue of the Journal “Grammars” with the Theme “Grammar Induction” 7, 57–68 (2004)

2. Arbib, M.A.: The Handbook of Brain Theory and Neural Networks, 2nd edn. MIT Press,
Cambridge (2002)

3. Bogard, W.: Book Review: How the Actual Emerges from the Virtual. International Jour-
nal of Baudrillard Studies 2(1) (2005)

4. Bonta, M., Protevi, J.: Deleuze and geophilosophy: a guide and glossary. Edinburgh Uni-
versity Press, Edinburgh (2004)

5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classi-
fiers. In: Haussler, D. (ed.) 5th Annual ACM Workshop on COLT, pp. 144–152. ACM
Press, Pittsburgh (1992)

6. Brooks, R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation (1986)

7. Clark, A.: Natural-Born Cyborgs: Minds, Technologies, and the Future of Human Intel-
ligence. Oxford University Press (2003)

8. DeLanda, M.: War in the Age of Intelligent Machines. Zone Books, New York (1991)
9. DeLanda, M.: Intensive Science and Virtual Philosophy. Continuum, London (2002)

10. DeLanda, M.: Ecology and Realist Ontology. In: Herzogenrath, B. (ed.) Deleuze/Guattari
& Ecology, pp. 23–41. Palgrave Macmillan, London (2009)

11. DeLanda, M.: Philosophy and Simulation: The Emergence of Synthetic Reason. Contin-
uum, London (2011)

12. Deleuze, G.: Difference and Repetition. Translated by Paul Patton. Continuum, London
(2004)

13. Deleuze, G., Guattari, F.: A thousand plateaus: capitalism and schizophrenia. Translated
by Brian Massumi. Continuum, London (2004)

14. Elman, J., et al.: Rethinking Innateness: A connectionist perspective on development,
Bradford. MIT Press, Cambridge (1996)

15. Gaffney, P.: The Force of the Virtual. University of Minnesota Press, Minneapolis (2010)
16. Grey, W.: An imitation of life, pp. 42–45. Scientific American (1950)
17. Hendriks-Jansen, H.: Catching Ourselves in the Act: Situated Activity, Interactive Emer-

gence, Evolution, and Human Thought. MIT Press, Cambridge (1996)
18. Koza, J.R.: Hierarchical genetic algorithms operating on populations of computer pro-

grams. In: Proceedings of the Eleventh International Joint Conference on Artificial Intel-
ligence IJCAI 1989, vol. 1, pp. 768–774 (1989)



120 T. van der Zant, M. Kouw, and L. Schomaker

19. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech
recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

20. Meillassoux, Q.: After Finitude. An Essay on the Necessity of Contingency. Continuum,
London (2008)

21. Mitchell, T.M.: Generalization as search. Artificial Intelligence 18(2), 203–226 (1982)
22. Mitchell, T.M.: Machine learning. McGraw-Hill, Boston (1997)
23. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Sci-

ence 220(4598), 671 (1983)
24. Polanyi, M.: The Tacit Dimension. First published Doubleday & Co. (1966); Reprinted

Peter Smith, ch. 1: “Tacit Knowing”, Gloucester, Mass (1983)
25. Prigogine, I., Stengers, I.: Order out of Chaos: Man’s new dialogue with nature.

Flamingo, London (1984) ISBN 0006541151
26. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech

recognition. Proc. IEEE 77(2), 257–286 (1989)
27. Shafer, G., Pearl, J. (eds.): Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-

mann, San Mateo (1988)
28. Simon, H.A.: The Sciences of the Artificial, 1st edn. MIT Press, Cambridge (1969)
29. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behav-

ioral Sciences. PhD thesis, Harvard University (1974)
30. van der Zant, T., Schomaker, L., Haak, K.: Handwritten-word spotting using biolog-

ically inspired features. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 30(11), 1945–1957 (2008b)

31. van der Zant, T.: Generative AI: a neo-cybernetic analysis. PhD thesis, University of
Groningen (2010) ISBN 978-90-367-4470-6

32. Varela, F.J., Thompson, E.T., Rosch, E.: The Embodied Mind: Cognitive Science and
Human Experience. MIT Press (1992)



Turing Revisited: A Cognitively-Inspired
Decomposition

Tarek Richard Besold

Abstract. After a short assessment of the idea behind the Turing Test, its actual
status and the overall role it played within AI, I propose a computational cognitive
modeling-inspired decomposition of the Turing test as classical “strong AI bench-
mark” into at least four intermediary testing scenarios: a test for natural language
understanding, an evaluation of the performance in emulating human-style rational-
ity, an assessment of creativity-related capacities, and a measure of performance on
natural language production of an AI system. I also shortly reflect on advantages
and disadvantages of the approach, and conclude with some hints and proposals for
further work on the topic.

1 Introduction

In early 2011, the world was amazed when watching a series of three subsequent
episodes of the popular quiz show “Jeopardy!” [28]. A new candidate challenged
the two best players that had participated in the game since the show’s debut in
1964, and managed to consistently outperform both of them. So far, so good - but
the really astonishing part is: This new player was not human, but IBM’s Watson,
an artificial intelligence computer system capable of answering questions posed in
natural language [12]. Watson’s performance on the type of inverse questions an-
swering task applied in Jeopardy! clearly was super-human (at least when being
compared to the two extraordinary Jeopardy! champions the machine was compet-
ing with), raising one fundamental question: Due to the capabilities the machine has
shown, should it be considered intelligent? And if so, to what extent?

The Turing Test, firstly introduced by Turing in his 1950 paper “Computing Ma-
chinery and Intelligence” [30], arguably is AI’s best known criterion for deciding
whether a machine has reached a human-like level of intelligence. Although quite
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some fundamental doubts about its exact meaning and usefulness exist (one of the
best known counterarguments being Searle’s “Chinese Room Argument” [26]), it
has influenced the development of the field of AI and more than 60 years later still
is object of discussion and debate (cf. e.g. [21]), even having become the object of
a popular annual AI competition, the “Loebner Prize” (cf. e.g. [20]). Also, no clear
really equivalent alternatives to the Turing Test seem to be available and commonly
acknowledged (partly with exception of the “AI Grand Challenges”, cf. e.g. [4]),
still making some form of the Turing Test a pragmatic standard when ultimately
judging the abilities of an AI system compared to human intelligence (cf. e.g. [16]).
This paper sets out to give a quick assessment of the Turing Test itself, together with
the role it played and plays in AI, followed by a decomposition of the original test
into four separate challenges, some reflections on the motivations for and purpose
of the creation of this renewed basis for a take at Turing’s gargantuan task, and a
placing of such an endeavor within the context of related work.

Sect. 2 provides an introduction to the Turing Test itself (also outlining some of
its different interpretations), as well as a short overview of the test’s history within
AI. In Sect. 3, the main contribution of this work is introduced, namely the decom-
position of the original Turing Test into four cognitively motivated subtasks, each
of which individually poses a challenge for current AI research. Some reflections
on these subtasks, their meaning and importance can be found in Sect. 4. A sum-
marizing conclusion, together with some hints at possibilities for further work and
research, is given in Sect. 5.

2 The Turing Test: Idea and Evaluation

Alan Turing’s famous paper “Computing Machinery and Intelligence” [30] starts
with the equally well-known phrase:

“I propose to consider the question, ‘Can machines think?’ ”

This seemingly simple question has inspired and haunted generations of researchers
not only in AI, but also in related fields like cognitive science, cognitive modeling,
or some sub-disciplines of philosophy. Still, as also Turing directly explains in his
article, there are numerous problems linked to this question and its formulation, with
the most obvious probably being the lack of clear and satisfactory ways to define the
used concepts of “think” and “machine”. Thus, Turing continues with an attempt at
mitigating this problem by replacing the original question by a closely related one
that in turn can be stated in mostly unambiguous words. This new task is later in the
paper stated as:

“Are there imaginable digital computers which would do well in the imitation game?”

As Harnad already noted in [17], this rephrasing nonetheless brings along a signifi-
cant change in the precise meaning, implications and evaluation criteria of the task,
as the focus is almost exclusively put on performance aspects: Instead of challeng-
ing a machines capability to think (whatever this might mean), the new question is
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asking for a machines capability to act in a way humans (as thinking entities) can
act.

2.1 The Turing Test(s)

In order to make this difference more clear, let us have a closer look at the imita-
tion game. This game was originally inspired by a party game, which in its sim-
plest, most abstract form can be described as follows: Given three players A, B and
I, where A is a man, B is a woman, and I (the interrogator) can be of either sex.
I is unable to see either A or B, and communication between A and I, or B
and I, respectively, only happens through written notes. By asking questions of A
and B, I now should determine which of both is the man and which is the woman.
A’s role in the game is to trick I into making the wrong decision, whilst B attempts
to assist I in making the right one.

Starting out from there, Turing’s original paper now features at least two re-
interpretations of the imitation game as to make it usable for the purpose of testing
for machine intelligence:

• In what Sterret calls the “Original Imitation Game Test” in [21], the role of A is
filled by a computer, which has to pretend to be a woman and trick I into making
the wrong decision. For deciding whether the computer was successful or not (i.e.
if the test has been passed), in [30] a statistical criterion was proposed, playing
several rounds of the game, and comparing the outcome when A is a computer
against the outcome when A is a man (who also has to impersonate a woman).

Will the interrogator decide wrongly as often when the game is played like this as
he does when the game is played between a man and a woman?

• The second version of the game to be found in [30] changes the setting yet again.
In this version, the role of A is still to be taken by a computer, whilst the role of B
has to be played by a man, with the interrogator I deciding which is a computer
and which is a human, resulting in the nowadays predominant interpretation of
the Turing Test, even named“Standard Turing Test” by Sterret [21].

If both re-interpretations are directly compared, one thing should be noted: Whilst
the Standard Turing Test uses similarity to human performance as decisive criterion
(the more human-like the computer behaves, the more likely he will be mistaken as
being the human player), the Original Imitation Game version involves human-like
performance “only” in so far as it is needed for introducing a standard for machine
intelligence (just consider that also a man could fail this test, as he as well is re-
quired to impersonate a woman and to try to deceive the judge). So it seems that
the Original Imitation Game Test can be seen as more demanding than the Standard
Turing Test, as “merely” simulating human conversational behavior might not be
enough to pass the former one, but instead the full-fledged resourcefulness of hu-
man intelligence (e.g., involving cognitive capabilities as rationality and creativity,
which also the man will have to put to use when pretending to be a woman) might
be needed as a bottom line for successfully passing the challenge.
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2.2 Controversy, Pros and Cons, Status Quo

For a long time, researchers and engineers in AI have taken the Turing Test (i.e.
mostly the Standard Turing Test) as unrivaled benchmark for judging machine in-
telligence, where only over the last years alternatives (e.g. in the form of Brach-
man’s “AI Grand Challenges” [4]) have been developed and have gained popularity.
Nonetheless, many scholars from different fields have been expressing fundamen-
tal doubts concerning the precise meaning, and also the usefulness, of the Turing
Test as such: Which version of the test should be taken as the one originally pro-
posed by Turing? Which one could possibly be the right one for testing machine
intelligence? If a machine would pass the Turing Test, what would be the implica-
tions? These are only some of the questions and caveats frequently brought forward
in discussion. Also, quite refined refutations of the suitability of the Turing Test for
any kind of testing purpose have been phrased, the most famous one probably being
Searle’s “Chinese Room Argument” [26], trying to show that a program could possi-
bly pass the Turing Test simply by manipulating symbols according to rules without
having any understanding of the meaning. From there, Searle continues that with-
out understanding, machines in turn could not be said to be “thinking” in the same
sense as humans seem to do, which would make the Turing Test a meaningless crite-
rion. Although opinions concerning the appropriateness and applicability of Searle’s
thought experiment differ, ranging from rejection (see, e.g., [18]) to positive accep-
tance (see, e.g., [3]), it definitely had and has a strong influence on the entire debate
concerning not only the Turing Test, but also machine intelligence in general.

Clearly, there are advantages of using Turing’s proposal as a test for machine in-
telligence. On the positive side, the tractability and (relative) simplicity of the test as
such have to be acknowledged, together with the almost unbounded breadth of the
subject matter (as already pointed out in [30], a question/answer method seems to
allow for almost every topic possible). Nonetheless, this testing method also brings
along clear disadvantages, namely the fixation on human-like intelligence as a cri-
terion (i.e. testing for human-likeness, instead of general intelligence), the focus on
the behavioral and functional side of intelligence (unavoidably included by exclu-
sively using the machines behavior as observed characteristics) which possibly does
not allow to draw a distinction between simulated and real intelligence (if there is
such a distinction), and of course the “human factor” introduced e.g. by using pos-
sibly inexperienced and therefore overly credulous judges, reducing the feasibility
of the test. Additionally, from an engineering and implementation point of view,
also the breadth of the subject matter should not be seen uncontroversial: Here, the
main drawback of the Turing Test in my eyes is its overall generality and relative
systemic complexity (mostly resulting from the high dimensionality of the prob-
lem introduced by using a general question/answer method), seemingly demanding
the construction of complicated and highly refined systems without providing any
guarantee of success (cf. e.g. [27]).1

1 Partly due to this, alternative challenges and tests for the performance of AI systems
(cf. e.g. [7]), as well as successors for the Turing Test (cf. e.g. [22]), have already been
proposed.
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Although the philosophical interest in the underlying questions has stayed con-
stant and untouched, looking at it from an applied AI scientist’s point of view, over
the course of the last years Turing’s test has lost quite some of its appeal and im-
portance. Where it had sparked very influential research endeavors in the 1960s and
1970s (e.g. the development of Weizenbaum’s chatterbot ELIZA [32] and Colby’s
PARRY [8]), for many working researchers and engineers in the field of AI its role
as a benchmark and goal for the development of an artificial intelligence has now
been taken over by other, seemingly more suitable and more clearly delimited tasks
like the already mentioned AI Grand Challenges. As an exception to this trend, the
over the last years fairly popular “Loebner Prize Competition” [20] ought to be men-
tioned: In this annual chatterbot competition, held since 1990, prizes are awarded
to the bot considered most human-like in its conversational behavior, judged on ba-
sis of the Standard Turing Test. Even though critics complain that the focus of the
systems entering the competition lies much more on deceiving the human judges
via artificial typos and speech particularities, than on overall intelligent conversa-
tional behavior, there seems to be a stable community supporting the competition
and participating in it on a frequent basis.

Nonetheless, despite these difficulties and reasons for reservations, I still con-
sider the Turing Test a valuable benchmark and goal within AI, worth effort and
work. It might be the case that the Turing Test provides neither logically necessary,
nor logically sufficient conditions for attributing general intelligence to an artificial
system. But, being highly sympathetic to both, the original ideas and dreams of AI
(namely re-creating intelligence on a human level), and their newest incarnation, the
so called AGI movement [31], these observations do not diminish the test’s useful-
ness in any way: Instead of the rather abstract notion of general intelligence, from
the very beginning a more anthropocentric reading of the concept of intelligence
seems significantly more suitable within an AI context. Now, once the notion of
intelligence has been specified in a way using humans as defining gold standard
for intelligent agents, and thus intelligence, it should already become intuitively
clear that the Turing Test does provide at least necessary conditions for judging
an artificial system’s intelligence capacities as human-like. Moreover, it does this
in a very accessible and understandable way, allowing for a comparison between
man and artificial system in a comparatively unrestricted and general setting, by
this amongst others avoiding many methodological biases and implicit assumptions
(in many cases introduced by the selection of test criteria and formal paradigms
for judging or measuring intelligence etc.). Therefore, in the following section, I
want to introduce a cognitively inspired subdivision of the overall Turing Test into
four subtasks (SubTuring I-IV), hoping to provide more suitable incentives for re-
searchers in AI and cognitive modeling to work on projects ultimately contributing
to passing Turing’s challenge (explicitly addressing both, the Standard Turing Test
and the Imitation Game Test).
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3 SubTuring I-IV: The Challenges

In the following, four challenges for designing and testing artificially intelligent
systems are proposed. These challenges have not been arbitrarily chosen, but re-
flect very high-level key capacities of human cognition and (the phenomenon which
normally is taken as) intelligence. Also, the way the tasks have been defined, no ex-
plicit or implicit constraints concerning mechanisms or particular functions which
ought to be used in a solution are introduced, but the challenges stay on an abstract
computational level, leaving the particular implementation to the system’s designer.

As criterion whether these challenges have been passed, I introduce a statistical
mechanism similar to the one proposed by Turing himself: The described tasks have
to be conducted over a sufficiently large set of samples, in parallel but separately by
the machine and a human, and the solutions afterwards have to be judged concern-
ing their source of origin by another independent human judge. The SubTuring task
is resolved if the judge is not able to correctly decide in a significant majority of
cases which output has been produced by the machine, and which output has been
produced by the human (“human-likeness criterion”, HLC).2 This way of evaluat-
ing the performance of the system seems more meaningful to me than a single trial
criterion, as it, e.g., more closely resembles the way we judge ourselves and other
humans, also taking into account different predispositions and talents which might
make different instantiations of one and the same overall generic task vary in per-
ceived level of difficulty (an effect which then in turn is normally also reflected in
the respective results).

3.1 SubTuring I: Human Language Understanding

The first sub-challenge within AI as a discipline mainly goes to people working
in natural language processing: Via a standard input terminal provided with a set
with several samples of any kind of finite natural language input, construct a system
which is capable of translating these input samples to a meaningfully chosen prede-
fined formal language,3 together with matching correspondences with concepts in a
lexical ontology.4 Test the set of results on HLC.

2 The time needed for deriving a solution deliberately has not to be taken into account, the
judge is only provided with the final sets of solutions, without being given any information
concerning computing/solving times. The only constraint concerning computing times is
that each set of inputs which can be processed by a human within his average lifespan must
be processable by the machine within roughly the same timespan.

3 Here and later I propose to use a refined context-free grammar, as e.g. Gazdar’s General-
ized Phrase Structure Grammar [13] or its descendants and successors (cf. e.g. HPSG [23]).
I am aware of the longstanding and still ongoing debate concerning the suitability and ade-
quacy of a context-free grammar for such an endeavor, but propose to valuate performance
aspects as far more important than theoretical considerations concerning competence.

4 Here and later I propose to use e.g. synsets within WordNet [11] as a basis.
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3.2 SubTuring II: Human Language Production

Also the second sub-challenge within AI as a discipline mainly goes to the field of
natural language processing, and can to a certain extent be seen as the inverse chal-
lenge to SubTuring I: Provided with a set with several samples of descriptions of
situations in a meaningfully chosen predefined formal language, together with cor-
respondences with concepts in a lexical ontology, construct a system which is capa-
ble of re-describing the situations in form of natural language output in a human-like
manner via a standard output terminal (i.e. also taking into account behavioral as-
pects of output generation, e.g. delays in typing, typing errors, colloquial ways of
speaking etc.). Test the set of results on HLC.

3.3 SubTuring III: Human Rationality

The third sub-challenge within AI as a discipline mainly goes to the fields of arti-
ficial general intelligence, cognitive modeling and decision theory (although to the
best of my knowledge only very few attempts aiming at fully reproducing human-
style rationality, or developing a positive instead of normative theory of human ratio-
nality, have been conducted so far, cf. e.g. [1]): Provided with a set of descriptions
of situations, i.e. context descriptions and problems/tasks (e.g. decision or judge-
ment), in form of a meaningfully chosen predefined formal language, together with
correspondences with concepts in a lexical ontology, construct a system which is
capable to decide or resolve the problem/task. Test the set of results on HLC.

3.4 SubTuring IV: Human Creativity

The fourth sub-challenge addresses a field of problems which to the best of my
knowledge currently is at least not widely addressed within AI research, the capacity
of operational creativity (i.e. creativity in both, problem-solving and the problem-
independent production of new concepts): Provided with a set of descriptions of
situations, i.e. context descriptions and problems/tasks (concrete problem descrip-
tions, but also open tasks like “do something with it”), in form of a meaningfully
chosen predefined formal language, together with correspondences with concepts in
a lexical ontology, construct a system which is capable to resolve the problem or
perform the task. Test the set of results on HLC.

4 SubTuring I-IV: An Assessment

In this section, I want to have a closer look at the different SubTuring tasks, their
respective particularities and implications, together with the actual status of research
in the corresponding fields and directions.
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4.1 SubTuring I & II: Key Technology

Both types of tasks presented in SubTuring I and SubTuring II, namely natural lan-
guage understanding and natural language production, are already worked on in
rather prominent fields within AI and (computational) linguistics, for example in the
disciplines of natural language processing, ontology engineering or (in parts) data
mining. Over the last decades, significant progress has been made towards devel-
oping more feasible techniques and methods for performing this type of task, with
research being driven by an at least twofold motivation, on the one hand aiming at
implementing these human faculties within an artificial system (as for instance the
numerous embodied conversational interface agents [5] which nowadays are avail-
able e.g. on the web), on the other hand also hoping to be able to project back from
the artificial domain into the natural one, which would then allow to gain insight
into how the corresponding capacities and processes work in the case of human
beings from the artificial implementation (as an example remember the impact El-
man networks [10] had on the field of linguistics when being used to learn subject-
auxiliary inversions [19], refuting the assumed parade case supporting Chomsky’s
Universal Grammar Theory [6]). Also, this process has been positively influenced
by the fact that the area of language processing probably is one of the best exam-
ples for a mostly well-functioning interaction between industry and academia, with
major players e.g. from information-related business areas providing funding and
infrastructure for both applied and also foundational research in association with
universities and research institutes (here examples would be Microsoft Research’s
group for Natural Language Processing or similar activities in the field by Google
Research). The industry’s motivation for such an involvement is clear, as obviously
working systems capable of successfully passing SubTuring I or SubTuring II could
find manyfold applications in domains like human-computer interaction, data min-
ing, or Semantic Web technologies. All in all this clearly has contributed to making
SubTuring I and SubTuring II the challenges within the overall SubTuring frame-
work which are closest to be resolved (although there still is quite some work left to
be done).

4.2 SubTuring III: Change of Paradigm

The human rationality task formulated in SubTuring III, in one form or another
is up to a certain extent part of the research questions asked in (amongst others)
artificial general intelligence, cognitive modeling, decision theory and philosophy.
Nonetheless, although numerous different models and theories of rationality exist
(just think of the plethora of representatives for the four classical types of rational-
ity frameworks, namely probabilistic, logical, game-theoretical and heuristics-based
approaches), none of them even comes close to covering human rationality and ra-
tional behavior. Instead, research up to now across all disciplines has mostly limited
itself to normative theories of rationality, providing criteria for judging an action or
a type of behavior as rational or irrational, but only quite recently and rudimentarily
has tried to develop positive theories of human rationality, allowing for prediction
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and simulation (cf. e.g. [2], [24]). But exactly the latter notion is what seems to be
needed for a system capable of passing the Turing Test: A positive account with a
strong focus on substantive rationality, giving only minor importance to procedu-
ral aspects. Of course, such a theory would most likely make rationality a subject-
centered notion (an idea lately also brought forward in the field of decision theory,
cf. e.g. [14]), if not even a subjective one. An important role in developing such a
theory might be played by contributions from cognitive science and cognitive mod-
eling, trying to identify common mechanisms and underlying cognitive capabilities
of human rationality, which in turn then could be used as sources of inspiration for
implementation in an artificial system (and would possibly also provide foundations
for avoiding the conceptual and methodological problems a purely subjective – and
thus highly relativistic – notion of rationality would bring along). The apparent pre-
vious lack of such a research program seems even more surprising when taking into
account the possible application scenarios of a reliable theory for predicting and
modeling human-style rationality, ranging from interface-related issues in human-
computer interaction to helper applications and intelligent prosthetics.

4.3 SubTuring IV: Basic Questions

The fourth SubTuring task is conceptually complementing SubTuring III in the con-
text of the overall Turing Test framework. Where SubTuring III was designed to
reflect human-style rationality, SubTuring IV addresses the issue of operational or
productive creativity, i.e. creativity in both, creative or inventive problem-solving
and problem-independent production of new concepts (corresponding to the pro-
ductive side of the distinction between productive and reproductive thinking in psy-
chology). This topic to the best of my knowledge so far has only rarely been touched
upon in classical AI, some of the few exceptions for example being the work on ac-
tive exploration, artificial curiosity and creativity conducted by Schmidhuber (cf.
e.g. [25]) or the Inventive Machine project [29].5 Certain skepticism towards the
development of an artificially creative system seems natural and already justified by
the characteristics of creativity as a phenomenon itself, mostly being perceived as
clearly non-linear and even “jumpy” in nature. Here, classical techniques and meth-
ods, which from a high-level point of view can be described as mostly functionally
linear and continuous programs, do not seem fit. Instead, probabilistic and random-
ized approaches give a more promising impression, shifting the problem at hand
from implementing “real creativity” to a recognition task, based on a fundamental
questions: Provided with a sufficient number and quality (e.g. variety) of samples,
is creativity a learnable, and thus detectable, feature, i.e., is the degree of creativity
of a solution an abstractable or objectifiable property? And secondly, if this should
actually be the case, to what extent is the perception and judgment of creativity

5 For an overview of further work in the field called “Computational Creativity” also cf.
e.g. [9]. Still, I want to point out that only some of the projects and programs mentioned
there address issues of operational or productive creativity in a broader sense (as would for
instance be needed for a task as general as SubTuring IV).
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subjective, i.e., are there common features and criteria shared on an interpersonal
level, or are creativity judgments limited to a purely personal notion, thus collaps-
ing into total relativism? Still, research in these questions would seem worthwhile,
thinking about both, the implications a successful endeavor of this type could have
e.g. for the creation of a general artificially intelligent system, and the possible appli-
cations in industry and engineering scenarios, with automatic assistance systems for
innovation and design or entertainment applications just being two out of numerous
examples.

4.4 SubTuring I-IV: A Synopsis

Having a synoptical view at all four proposed SubTuring tasks, from a cognitive per-
spective there is good reason for considering successful solutions to each of the four
challenges (language understanding and production, human rationality and creativ-
ity) condiciones sine quibus non for seemingly intelligent behavior, and thus also
for passing the Turing Test in its Original Imitation Game reading. On a meta-level,
concerning possible implications and consequences for the Turing Test, of course,
even if SubTuring I-IV were solvable with existing programming and technological
paradigms, counterarguments of the style of Searle’s Chinese Room argument could
still be made (with the overall idea by a decomposition into smaller subtasks possi-
bly becoming even more vulnerable to this type of argument). In fact, the position
one will want to take with respect to SubTuring I-IV will most likely be crucially
dependent on one’s attitude towards the Turing Test in the Chinese Room context.

Nonetheless, once the Turing Test has been granted some intrinsic value, by in-
troducing the SubTuring I-IV challenges the breadth of the subject matter, and thus
also the dimensionality of the problem itself, can be reduced, making the subtasks
possibly more suitable incentives for researchers in different sub-disciplines, and ad-
ditionally involving and including new disciplines into this line of research that have
not directly been interested in Turing’s task before. Also, as already pointed out be-
fore, solving SubTuring I-IV would without any doubt provide great benefit to both,
“weak AI” and “strong AI”, ranging from applications of the intermediate systems
in human-computer interaction (mainly SubTuring I and II), over predictive tools
for human decision-making and behavior (mainly SubTuring III) and automatic as-
sistance systems for creativity and problem-solving (mainly SubTuring III and IV),
to full-fledged attempts at passing the Turing Test (SubTuring I-IV).

5 Conclusion

This work presents a cognitively-inspired decomposition of the Turing Test into four
mostly independent subtasks, namely language understanding, language production,
human rationality and operational creativity. Insofar, it can be seen as somewhat
close in spirit to previous modifications or decompositions of Turing’s task, with
Harnad’s “Total Turing Test” [15] probably being one of the best known propos-
als so far. Still, there are fundamental differences between the proposals, as where
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Harnad’s conception from my point of view also involves notions of embodiment
and not exclusively language-based interaction with the world, my proposal stays
at a quite abstract purely computational level, using language as only medium of
interaction (i.e. in a way also staying closer to Turing’s original conception).

At the present moment, the proposal and the corresponding theory are still in
an early stage, leaving some important questions unanswered and subject to future
work, both on engineering side (e.g.: What methods and techniques could or should
be applied to build a system passing SubTuring I-IV?), as well as with respect to
more philosophical considerations (e.g.: What precisely is the delta between a com-
bination of SubTuring I-IV and Turing’s test? If any of SubTuring I-IV should be
unsolvable, is artificial general intelligence possible at all?). Nonetheless, I am con-
vinced that continuing with this line of research is worth the effort, having a look at
the possible consequences and effects in theory and applications each step towards
successfully solving any of the four newly introduced SubTuring challenges could
have.
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Abstract. It is likely that in AI, Robotics, Neuroscience and Cognitive Sciences, 
what we need is an integrated approach putting together concepts and methods 
from fields so far considered well distinct like non linear dynamics, information, 
computation and control theory as well as general AI, psychology, cognitive 
sciences in general, neurosciences and system biology. These disciplines usually 
share many problems, but have very different languages and experimental metho-
dologies. It is thought that while tackling with many serious ‘hard core’ scientific 
issues it is imperative, probably a necessary (pre) requisite, that we do serious ef-
forts to clarify and merge the underlying paradigms, the proper methodologies, the 
metrics and success criteria of this new branch of science. Many of these questions 
have already been approached by philosophy, but they acquire in this context a 
scientific nature: e.g.: Is it possible cognition without consciousness? And without 
‘sentience’? In the context of AI and neuroscience research various definition of 
consciousness have been proposed (for example by Tononi, [44], to quote an ex-
ample liked by the author). How they relate to the previous and contemporary phi-
losophical analysis? Sometimes scientists may look as poor philosophers, and the 
opposite: philosophers may look as poor scientists, yet, the critical passages of his-
tory of science during a paradigm change or the birth of a new discipline have of-
ten involved a highly critical conceptual analysis intertwined with scientific and 
mathematical advancements. The scientific enterprise is now somehow close to 
unbundle the basic foundation of our consciousness and of our apperception of re-
ality, and, it is clear that there are some circularity issues with the possible ‘expla-
nations’, at least. 
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1   Introduction 

On the one hand AI and Robotics develop new artificial systems showing some 
features of what we call intelligent/cognitive adaptive behavior or intelligent 
thinking, on the other hand neuroscience, cognitive sciences and biology reverse-
engineer intelligent/cognitive processes in natural systems. Despite 50 years of re-
search in AI and Robotics the real capabilities of artificial systems to deal with 
open-ended environments with gaps of knowledge is still unsatisfactory. It is ap-
parent that not only the more evolved human or mammalian brains, but even the 
'simple' 15-20000 neurons Aplysia nervous system shows much more robust and 
adaptive than any current AI or robotic application. Not surprisingly while there 
are impressive and fast progresses in the decoding of micromechanisms of neural 
activation in the brain or of gene regulation networks in the cell we still lack 
working quantitative models of emergent system level processes like symbol 
grounding or multicellullar organism tissue specialization. In particular new fields 
of research like system biology try to fill those gaps.  

One of the books defining the beginning of what we today call science had the 
title ‘Principia Mathematica Philosophiae Naturalis’. The revolution in physics in 
the early 20th century, special and general relativity and quantum mechanics, as 
well as the new foundation of biology in the 50s, around the ‘central dogma’, re-
quired a deep conceptual analysis whose essential nature was philosophical.  

The question ‘Can a machine think?’ requires a careful definition of what you 
mean as a ‘machine’ and as ‘thinking’ (maybe also of what do you mean as ‘to 
can’). 

An interesting question from the conceptual standpoint is which are the system 
level characteristics which allow autonomous cognitive behavior in natural sys-
tems and which set of characteristics are needed in an autonomous system in gen-
eral, natural or artificial. This should be the core of the science of ‘embodied cog-
nition’ or whatever you want to call it. 

As told, we probably need a unified approach integrating together concepts and 
methods from research areas spanning from non-linear dynamics to information, 
computation and control theory, from general AI to system biology. 

In the following sections a not exhaustive summary of the different positions 
and proposals in the different fields which should pave the way to a new unified 
framework, is provided, in order to make more evident the necessity of a concep-
tual analysis of clear philosophical nature to proceed in research in those related 
fields. Of course it is not possible to give a complete survey of the many activities 
ongoing in those research areas, the aim of this excerpt is to support the general 
idea of the necessity of the dialogue between those disciplines and, above all, the 
idea that they are aspects of a ‘deeper’ new science: the science of physical cogni-
tive systems. 
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The main ideas advocated here are that: first, it is not realistic to cope with 
problems in those disciplines without looking at what is going on in the neighbor-
ing ones, something that few people will object to; second, potentially more con-
troversial, that we need a common conceptual framework and a new science: the 
science of physical embodied cognitive systems.  

When we think to AI, we may probably consider as typical examples the Hanoi 
Tower planner or a chess player, following the historical defeat of G. Kasparov 
then the world chess champion, by a machine in 1996. Yet the most successful AI 
applications are probably in the field of Bayesian decision systems, e.g. Google 
search or more recently IBM Watson. It is has been shown, by many experiments, 
that the human (and mammalian) brain might be seen as a Bayesian decision sys-
tem. A complex system like it might have evolved mainly to control movement, in 
particular walking and what roboticists call visual manipulation and grasping, see 
[6,7,8,12,13,15, 55]. 

Although there are other hypotheses, for example some recent results, [56], 
coming from the analysis of a large number of fossils, suggests that a very early 
leap in the mammalian brain dimensions might have actually be triggered by the 
needs of odor localization. To control movement in particular the human brain  
behaves in many experiments as it minimizes uncertainty, i.e. maximizing infor-
mation, through Bayesian estimation, by comparing the predictions of actions' 
consequence with the actual effect of the action themselves and by smoothing 
transitions from perception to action, by optimizing energy consumption. Predic-
tive and anticipatory behaviors show to be extremely important. From a Robotics 
standpoint, whatever the evolutionary role of motion control in the mammals, it is 
no surprise that it uses an important fraction of cerebral information processing re-
sources. If we compare these findings in natural systems, with most artificial cog-
nitive systems, the difference is not only a matter of computing power, but also the 
fact that, despite the fact that this has not yet well analyzed by researchers, the 
brain cognitive processes are actually embodied and intertwined with body dy-
namics. These kinds of processes have been studied from a different perspective in 
Robotics and New AI domain; think about the MIT, Delft and CMU biped under 
actuated walkers and other similar examples, [31]. 

As another, related, example, it is interesting to see how space representation is 
dealt with in some robotics researches and in some neurophysiology ones. 

A particularly successful methodology for managing space in robotics, applied 
to mobile, usually wheeled, robots, is Simultaneous Localization and Mapping, 
SLAM. In those algorithms the position of a robot (an agent) is simultaneously re-
constructed from a temporal series of noisy observations (coming from laser, 
odometry, monocular, unidirectional or stereo vision) through a statistic iteration 
process which as new observations come in refines continuously the inner model 
of the robot about the map of the surrounding environment and its position in the 
map.  This is usually done with the assumption that the processes (the linearized 
robot dynamics) are linear and noise is Gaussian. The space is always assumed 
Euclidean, and, with the exception of some recent work, [52], the algorithms are 
tacitly and not questionably based on an underlying Euclidean space representa-
tion. This is usually also the case for visual grasping system algorithms, [53] the 
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systems which aim to perform the kind of action that many think was crucial for 
the evolution of the human brain: the intelligent manipulation and grasping of 
known and unknown objects. 

On the contrary, we know from a significant amount of neurophysiology re-
sults, [46, 47], that the human brain manages three geometries for motion optimi-
zation in visual manipulation and grasping tasks: sometimes Euclidean, but more 
often Affine or Equi-Affine.  

The brain does not always represent space as Euclidean. Does this mean that 
the robotics researcher community ‘is wrong’ or that more likely we need a higher 
level of abstraction and understanding of a common underlying reality? The rea-
son why the human brain mainly relies, besides Bayesian decision methods, on a 
non Euclidean geometry for motion planning purposes is a consequence of some 
structural constraint in the neuronal architecture and or body structure, or there are 
good reasons to do that, for example due to energy optimization and predictive in-
formation maximization, for any intelligent system including artificial ones, ro-
bots?  

The human brain, as far as we know, is the most sophisticated cognitive ‘ma-
chine’ on our planet; nevertheless the basic organizational principles are shared 
with more ancient living beings and are evolved on top of evolutionary earlier so-
lutions. By the way, it is worth noticing that a ‘machine’ of this kind is closer to 
the concept of a high dimensionality adaptive complex system loosely coupled 
hierarchical network of networks than to a ‘clock’ machine like the model of Le 
Mettrie. This is the reason why complex system dynamics and network physics 
matter. 

Important aspects chased by developmental psychology, evolutionary robotics 
and biology are related to evolutionary processes, actually neuroscience and neu-
rophysiology works such as those recalled above are kind of black box instantane-
ous pictures of underlying system processes, which so far remain fundamentally 
unknown. 

Although in many cases the prevailing paradigm in robotics, ‘mutatis mutan-
dis’, may still be regarded as not much different from the ‘automata’ paradigm ex-
emplified in fig. 2, in the modern form of a stack of mechatronics and machine 
learning, it is a widespread opinion that in order to achieve a level of dexterity, 
adaptability and robustness comparable to what we see in the natural domain we 
need a deeper scientific foundation, [60]. 

It is believed that this new foundation might be given by the new science of 
physical cognitive envisioned, in different forms, here and elsewhere, for example 
here [49]. 

2.2   A Short Comparative Survey of Some Philosophical Views 

As already observed, some of the key issues in what are now regarded as scientific 
fields of investigation have been studied as philosophical topics for a long time. In 
this short survey we focus on a short not exhaustive list of philosophers whose in-
terests and approaches are closer to scientific disciplines such as AI, Cognitive  
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Fig. 2 The Jaquet-Droz brothers’ automata (built at the end of the XVIII century) are an ex-
ample of the level of complexity of behavior and realistic appearance that a purely mechan-
ical automata, based on gears, Geneva wheels, cams and belts can reach. Three of these au-
tomata (the writer, the drawer and the player) are conserved in the Neuchâtel Museum of 
Art and History. The writer, the most complex can be ‘programmed’ to write any given text 
with a maximum of 40 letters long. He inks his goose feather at regular times. His gaze fol-
lows the text while writing and move the head accordingly when he inks the pen. Similar 
examples of the same age are the Japanese Karakuri dolls (Courtesy: Neuchâtel Museum of 
Art and History). 
 
 
science, Robotics and neurosciences with the purposes, recalled many times, of 
calling for a potentially fruitful comparison of the different approaches and their 
subsumption in a more comprehensive and deeper conceptual, philosophical and 
scientific framework. We will recall later, as usually as examples, how the prob-
lems of perception and ‘sensory motor coordination’ now regarded as scientific 
field of investigation have actually been analyzed already in a philosophical con-
text. Moreover, it is interesting to notice that some recent discoveries in neuros-
ciences and neurophysiology such as the importance of emotions in the regulation 
of cognitive and even sensory motor coordination processes, see below the short 
discussion on Damasio’s work, were already proposed in philosophy on the basis 
of introspection and conceptual analysis. For example, [71], in “A Treatise of 
Human Nature”, Hume aims to found a ‘science of man’ as a ‘natural science’, in-
deed anticipating nowadays’ trends and states that that emotional drives direct rea-
son, not the opposite: "Reason is, and ought only to be the slave of the passions." 
In his view ‘ideas’ were abstracted from the series of ‘impressions’ coming from 
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the senses, the only source of knowledge. In his view the "self," was nothing more 
than a set of sensations bundled together. We may even see here an early formula-
tion of the ‘symbol grounding’ problem in enactive cognition. 

From a different respect, Kant's ‘transcendental method’ is close to the main-
stream approach in cognitive science: in order to study the mind he infers the con-
ditions necessary for experience. Unobservable mental mechanisms are postulated 
to explain ‘economically’ the observed behavior. ‘Transcendental apperception’ as 
the unified perception of all experience by the subject, and the idea that ‘represen-
tation’ is ‘representation to a subject’ thus postulating a self, if not a conscious 
subject, as a prerequisite for what in modern words we may call ‘cognition’ make 
his thought less prone to circularity issues than many more contemporary analysis.  
The idea of leveraging on conceptual analysis and introspection to deduce the ‘a 
priori’ condition to know the world, and to develop scientific knowledge such as 
the models developed by physics, is still significant.  

Kant’s view, which actually doesn’t say anything about the material support of 
the cognitive subject, in this sense is not ‘per se’ a dualistic or idealistic view. 

Surprisingly, Kant’ s ideas on self and consciousness had no influence until the 
past century in the work of Wittgenstein and later Shoemaker.  

Merleau-Ponty, [3], in opposition with the Cartesian dualism and in analogy 
with embodied and enactive cognition, observed that the subject is actually embo-
died and actually that body and mind are inherently intertwined: the ‘mind’ can be 
seen as the ‘intentional stance’ of the body. Phenomena are not abstract a-
temporal ‘objects’, which exist independently outside of the subject, but correla-
tions between sensory motor activities, the body and the external environment.  

This standpoint is very sympathetic to that of New AI and New Robotics. 
As much sympathetic as Locke and Husserl are, both providing views on the 

‘mind’ and the ‘self’ which are really, as in particular Merleau-Ponty’s ones, very 
inspiring for modern neuroscience researchers like Rizzolatti, [54], and in New AI 
and Robotics. Locke, usually credited to have been the first to do so, depicted the 
‘self’ as a continuous series of conscious states building knowledge on a ‘tabula 
rasa’. Husserl also sees object as a grouping of perceptual and utility aspects (‘af-
fordances’?) strictly related to our intentions to manipulate or simply observe the 
world. These positions share the limit that they are centered on the ‘cogni-
tive/perceiving’ function of an individual ‘agent’ and they might underestimate the 
importance in cognitive processes in the humans, and other animals, of net-
work/collective processes such as those discussed by Bateson with his concept of 
‘ecology of mind’, [68], and Marx’s idea of a collective learning through the 
‘praxis’.  

It is worth to notice that we do not naively claim that scientific research is vali-
dating one or another philosophical view: we want to warn that those preexisting 
analysis, sometimes really deep and which as in the cases above sound very  
meaningful to a contemporary cognition science researcher, should be seriously 
considered by scientist investigating similar topics with different methods. More 
relevant the fact that although there might be analogies with the process, which led 
from philosophy of nature to modern sciences, philosophical investigations on 
mind might have a different status where they focus on the circularity issues  
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implicit in any gnoseology, at least. Moreover, not only some recent philosopher 
who share our ‘zeitgeist’ appear familiar, but also unexpectedly other much older. 
For example, in a famous quote, Aristotle said: “If every tool, when ordered, or 
even of its own accord, could do the work that befits it, just as the creations of 
Daedalus moved of themselves . . . If the weavers' shuttles were to weave of them-
selves, then there would be no need either of apprentices for the master workers or 
of slaves for the lords.” If we read it today “The part of the quote "or even of its 
own accord” is elsewhere translated as "or by seeing what to do in advance" etc. 
(you may find many translations). I think this is an important part of the quote,  
so it's good to go back to the original text: Aristotle uses the word 
"προαισθανόμενον" – proaisthanomenon this means literally: pro = before, aistha-
nomenon = perceiving, apprehending, understanding, learning (any of these mean-
ings in this order of frequency) in my view it is clearly a word that is attributed to 
intelligent, living agents....i.e. ones with cognitive abilities (!)”, [57]. 

It is difficult to see the modern reading of a famous passage in Aristotle’s Poli-
tics as a mere arbitrary attribution of modern ideas to an old text, it seems more 
likely a rediscovery in a scientific context of the meaning of a philosophical anal-
ysis, which passed almost unnoticed in its context for its limited philosophical im-
plications, but looks enlightening in another cultural environment.  

None of these conceptual frameworks, and of those omitted for space reasons, 
is ‘neutral’ or not relevant with respect to the general problem of identifying the 
general conditions for a material system to be intelligent, cognizant and ‘sentient’ 
and they are source of inspiration from a conceptual, scientific and even engineer-
ing point of view. They have to be compared, if not reconciled, with the assump-
tions of a wide set of disciplines and the conceptual foundation of the new science 
of physical cognitive systems envisioned here and elsewhere. 

3   A Few Hints towards a Synthesis 

Which might be the common underlying ground of these wide set of ‘phenomena’, 
discovered by such diverse methods such as experimental scientific research, syn-
thesis of artifacts, philosophical analysis based on concept clarification and intros-
pection?  

Natural cognition might be seen as an emerging adaptive (meta) process of 
loosely coupled networks of embodied and situated agents. This is suggested by a 
number of conceptual analysis, scientific researches and experimental results, 
[24,29]. Embodied biological neural networks, whose complexity is significantly 
higher of that of the artificial neural networks as they are usually modeled by re-
searchers, are, by, far the most widespread ‘paradigm’ for implementing cognitive 
processes in nature. Of course, see [43], it is possible that ‘evolution worked with 
what was available’ and it is possible that not all the characteristics of ‘cognitive 
system implementation’ are necessary for autonomous cognitive behavior, yet as 
the natural systems have characteristics of adaptivity and robustness that so far we 
were not able to emulate, it make sense to try to ‘reverse engineer’ them.  
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We are led to ask ourselves which characteristics of natural systems are actual-
ly necessary for autonomous behavior, for the emerging of a ‘self’ and for con-
sciousness. 

Artificial cognitive systems engineered within the AI and the Robotics domain, 
are usually based on a different paradigm: a great variety of algorithms for the 
processing of probabilistic enunciates and the optimization of stochastic indexes, 
‘hard coded’ Bayesian inference networks in AI and a stack of mechatronic devic-
es, control theory based algorithms and AI in robotics. The main difference with 
their natural counterparts is the lack of self-organization (and much more limited 
exploitation of parallelism in computation and of under actuation in physical inte-
raction). This is no surprise if we consider that the theory of computation, [42], or 
that of statistical learning, [30], don’t include the physical system performing the 
computation or learning a given environment. These limitations looks like origi-
nating by ‘philosophical prejudices’: researchers tend to stick with the ‘common 
sense’ of the society within which they operate. There are, anyhow exceptions. In 
the past years Pfeifer and other researchers, [22,23], have shown the importance of 
'embodiment' and 'situatedness' in natural intelligent systems. 

It is, maybe, more critically important the fact that the basic assumption in the 
design of those systems (including recent celebrated successes like IBM’s Watson, 
[45]) require a ‘stage setting’ by the human designer of the system who is sup-
posed to know in advance (thanks to a rather different system implementation, his 
own mind-brain-body system) which kind of specific problems the system will 
encounter and which rule base will allow to cope with them. 

The emerging of intelligence, cognition, ‘sentience’ and meaning should be  
explained on the basis of the communication processes between autonomous cog-
nizant (loosely) networked agents, the network of networks of environmental rela-
tions. It could be modeled as the evolutionary self-organization of coevolving  
situated and embodied low level information processing, physically distributed 
among the inter communicating agents, motivated and initiated by physical fina-
lized interactions with the environment. 

The idea that intelligence and learning capabilities might emerge from some 
evolutionary process was actually already proposed by Turing, [67], and the mod-
el proposed here is in line with Bateson’ s concept of an ecology of mind. These 
ideas are discussed with some more details here: [29, 50]. 

These self-organization processes in network of networks of loosely coupled 
agents are likely to occur at many scales in size (from micro regulation in the cell 
nucleus to the tissue differentiation in the embryo, to the emergence of cognitive 
processes in the brain). Also, despite the conceptual and mathematical difficulties, 
these principles should guide the design of artificial cognitive systems.  

As an example we may speculate that the non Euclidean geometric optimiza-
tion of motion control is due to an emerging self organization process optimizing 
not only energy and other mechanics metrics, like stress strain etc, but also infor-
mation metrics ‘a la Shannon’. As another example emotions might be an emerg-
ing coordination process between many task optimizing the same metrics. 

Our purpose should be to define the conceptual framework, in the epistemolog-
ical and broadly philosophical sense, to define the conditions for cognition,  
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sentience, self and even consciousness in a material systems and to identify a set 
of coherent scientific models covering the phenomena now approached with dif-
ferent languages/jargons in different disciplines, but essentially dealing with intel-
ligent autonomous behaviors of material systems.  As told above the demarcation 
line between philosophical and scientific investigation, seems more blur and fuzzy 
than in the case of cognitive science than in the case of ‘philosophy of nature’. 

4   Open Issues 

Even from the necessarily short discussion above it is apparent that the program of 
developing a unified conceptual framework as a foundation for a new unified 
scientific domain poses serious challenges. Despite the fact that we may have 
some ideas about an unified framework, the diversity of ‘ontology’ and methodo-
logical approach between fields such as neuroscience and robotics, as instance, 
and the pre paradigmatic stage of cognitive sciences, make still premature to out-
line an ‘ontology’ and an epistemology for the new advocated science of physical 
cognitive systems. 

In the previous paragraph it has been proposed that cognitive processes emerge 
in physical systems as a collective organizational process of network of networks 
of loosely coupled (active) agents and it has been postulated that self-organization 
is a necessary attribute of an autonomous cognitive system. There are good rea-
sons to think so, yet this should be regarded at this point more as a research pro-
gram than an acceptable and well-corroborated new scientific paradigm based on 
experimental evidence. This is due to a number of open issues. Some of the more 
compelling ones, in the opinion of the author, are listed here below. Others would 
provide a different list. 

Complexity or ‘Simplexity’? 
 
The broad idea that cognitive processes, ‘self’ and ‘consciousness’ might be 
emerging organized processes from the collective behaviors of wide network of 
networks of independent agent, make somehow natural to model them by means 
of the conceptual and mathematical language of complex system theory. Under 
many respects complex system theory helps the understanding of the cognitive 
processes in physical systems (both natural and artificial), yet it must be noticed 
that, in natural cognitive systems there might be something more subtle at work: 
what, for example Alain Berthoz, calls ‘simplexity’, [63]. The complexity of the 
world is radically simplified in the agent perspective through a number of simpli-
fying principles. This allows keeping the computational load low enough to be 
managed. 

One of the most important of these simplifying ‘design solutions’ applied in 
natural cognitive systems is the radical simplification of the perception-action link 
by limiting the perceptual capabilities of the natural autonomous agent to its  
‘umwelt’. 
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Umwelt 

The concept of ‘umwelt’ (um- ‘around’, welt ‘world’), [61], was introduced by 
Jakob Von Uexküll at the beginning of the 20th century and has recently raised 
some new interest in the neurophysiology community, [48]. He is considered the 
founder of the so called ‘biosemiotic’, referring to semiotic science grounded in 
the biological world, as a matter of fact we only know physical systems able to 
manipulate ‘signs’ and the by far more effective are the biological ones. The ‘um-
welt’ is the environment-world as it perceived by a given animal. It is tightly re-
lated to what the animal can do in the world and what it can sense. What it can 
sense is what is needed to perform the actions necessary for its survival. Any ani-
mal has a different um-welt (including humans: we don’t see radio waves and ac-
tually we only perceive a very limited portion of the electromagnetic spectra, for 
example). The paradigmatic example is the tick’s umwelt. The tick uses the sensi-
tivity to light of its skin to reach an observation point (e.g., the top of a blade of 
grass) She senses the arrival of a ‘prey’ from the smell of butyric acid, which 
emanates from the sebaceous follicles of mammals, the she senses this she falls 
down freely until she enter in contact with the skin of a mammal and can thanks to 
touch find a proper place to embed into the skin of the prey. The ‘world’, ‘Um-
welt’, of the tick is thus limited, to an approximate gradient of light, an approx-
imate gradient of butyric acid and a texture haptic sense.  

His views show analogies and had some influence on the work of philosophers 
like Martin Heidegger, Maurice Merleau-Ponty, Gilles Deleuze and Félix Guattari 
and neurophysiologists like Berthoz and collaborators. 

It seems that the concept of ‘Umwelt’ might be extremely useful in the reverse 
engineering of natural cognitive systems and the design of artificial one, yet this 
‘view’ is not widely adopted. Moreover this should be referred to the reference 
framework of the emerging of coordination processes in the complex dynamics of 
(sometimes massively) multiagent systems. 

 

Body and Mind 

The Cartesian view about the distinction between body and mind is not popular 
among philosophers and psychologists, yet it is generally an untold assumption 
and a material fact in ‘traditional’ symbolic AI and Robotics. In any case the 
body-mind nexus has to be modeled in term of an extended dynamical systems 
theory. 

Consciousness, ‘self’, ‘sentience’ 

The concept of consciousness is a traditional topic in philosophy [72, 70], psy-
chology, and is deeply investigated in neurosciences, while it is a ‘marginal’ topic 
in AI and Robotics, and a ‘slippery’ topic in cognitive sciences. It is interesting to 
notice how hypotheses similar to those based on not scientifically structured ob-
servation, conceptual analysis and introspection such as thus of Hume have been 
somehow experimentally tested in recent times, by means of structural neuroimag-
ing/neuroanatomy, experimental neuroanatomy neuropsychology and functional 
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neuroimaging. For example by Damasio, [62], who is carrying out an investigation 
on the basic material (neural) underpinning of mind,  (protoself), self and con-
sciousness by means of scientific experimentation. 

In his view emotions are part of a homeostatic regulation process based on rein-
forcement learning process (reward/punishment in his terms). He sees (like James) 
‘feelings’ as a synthetic representation of the ‘body’ state, actual and ‘simulated’. 

From this kind of stand point Rizzolatti’s et al.,[54], results on mirror neurons 
can be seen as application of this body state simulation process. 

On the other side Tononi, [44], proposes a metrics with clinical aims based on 
information metrics of variety and brain-range integration. 

Which minimum degree of ‘self awareness’ is necessary to achieve a given de-
gree of autonomous behavior of a given ecology of agents in a given environment 
is an open issue for physical cognitive systems. 

Not ‘just’ Cognition 

Where psychology and psychoanalysis fit? Emotions have been considered in Ro-
botics only recently, while they have been a focus of interest for psychology, psy-
choanalysis and philosophy for a long time. Actually they are also an important 
matter of study for neurophysiology and neurosciences. An important question is 
if we should regards emotions as detached from cognitive capabilities, as in main-
stream emotional synthesis systems in AI and Robotics, or whether in the context 
of self-organizing cognitive processes they are necessary emerging regulator 
processes. 

Epistemological Issues 

Serious reasons of concern are epistemological issues. Why should we care about 
‘scientific methodology’ in the new science of physical cognitive systems or in 
particular in cognitive sciences and robotics research?  

Which role should have the synthetic approach (‘understand by building’) of AI 
and Robotics with respect to the more traditional experimental method applied in 
neurosciences or, at the other extreme, the case-by-case dialogic approach of the 
various current of psychoanalysis?  

In general in AI and Robotics, we are not always able to verify whether and by 
which measure proposed new procedures and algorithms constitute a real ad-
vancement and can be used in new applications, [51].  According to which metrics 
and by which procedures can we do comparisons between natural and artificial 
systems? 

Even in the engineering sense of a set of strategies for good experimental de-
sign practices and a do-it-yourself  approach prevails. 

How we can exploit epistemological models coming from Biology and extend 
them? 

How should analysis and reverse engineering of natural systems and the syn-
thesis of engineering artifacts live together? 
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How to frame this in the context of complex (or simplex) adaptive networked 
systems? 

Mathematical Issues 

The modeling of self-organization processes in loosely coupled network of agents 
from a mathematical standpoint is not trivial and probably there are not yet coped 
challenges to overcome. In particular this makes difficult to design artificial sys-
tems inspired by this paradigm and experimentally validate the hypotheses, in par-
ticular in life sciences, including neuroscience. 

Circularity Issues 

“The mind-stuff of the world is, of course, something more general than our individual  
conscious minds... It is necessary to keep reminding ourselves that all knowledge of our en-
vironment from which the world of physics is constructed, has entered in the form of mes-
sages transmitted along the nerves to the seat of consciousness... Consciousness is not 
sharply defined, but fades into sub consciousness; and beyond that we must postulate some-
thing indefinite but yet continuous with our mental nature... It is difficult for the matter-of-
fact physicist to accept the view that the substratum of everything is of mental character. 
But no one can deny that mind is the first and most direct thing in our experience, and all 
else is remote inference.” 

Sir A.S. Eddington, [68] 
 

This quote from a famous physicist of the beginning of the past century on the one 
hand underlines the general importance of the discussion here and in general of 
cognitive sciences and their paradigms, on the other hand raise indirectly the at-
tention on a potential circularity issue in this discussion: the explanatory models 
applied to the human mind are actually a product of the mind itself. This also ap-
plies to the philosophical analysis, but even old philosophers such as Kant seem 
much more aware of those potential problems than many contemporary scientist 
(the reverse engineer working in psychology, neuroscience, etc. and the synthetic 
designer of artificial systems working in AI, Robotics, Cognition etc.). 

Even the information driven self-organization methods and in general those 
based on information metrics ‘a la Shannon’, [37, 38, 39], rely on a concept of ‘in-
formation’ that, in a naïve interpretation, assume an ‘observer’ which is actually 
what has to be modeled. This can be overridden, but at the price of a subtle  
reinterpretation, [58]. 

5   Discussion and Future Work 

“How does it happen that a properly endowed natural scientist comes to concern himself 
with epistemology? Is there not some more valuable work to be done in his specialty? 
That's what I hear many of my colleagues ask, and I sense it from many more. But I cannot 
share this sentiment. When I think about the ablest students whom I have encountered in 
my teaching — that is, those who distinguish themselves by their independence of judg-
ment and not just their quick-wittedness — I can affirm that they had a vigorous interest in 
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epistemology. They happily began discussions about the goals and methods of science, and 
they showed unequivocally, through tenacious defense of their views, that the subject 
seemed important to them. 

Concepts that have proven useful in ordering things easily achieve such authority over 
us that we forget their earthly origins and accept them as unalterable givens. Thus they 
might come to be stamped as "necessities of thought," "a priori givens," etc. The path of 
scientific progress is often made impassable for a long time by such errors. Therefore it is 
by no means an idle game if we become practiced in analyzing long-held commonplace 
concepts and showing the circumstances on which their justification and usefulness depend, 
and how they have grown up, individually, out of the givens of experience. Thus their ex-
cessive authority will be broken. They will be removed if they cannot be properly legiti-
mated, corrected if their correlation with given things be far too superfluous, or replaced if 
a new system can be established that we prefer for whatever reason.” A. Einstein, [64] 

 
The words above from Einstein, with early 20th physics in mind, in a period of 
deep paradigmatic change and fast progress of physics, might have been written 
today thinking at the condition of the wide spectrum of disciplines, so far distinct, 
which should provide foundation to the new science of physical cognitive systems. 
There is no real progress without critical thought and if we want that AI and Ro-
botics do not stagnate, and that neuroscience and neurophysiology exploit their 
potential to reverse engineer the human and mammalian brain, we have a despe-
rate need of critical thought (from ‘reference ontology’ to ‘experimental method’) 
on the current basic, often untold, assumptions of research in those fields. 

Despite the diversity of concepts, theoretical approaches and experimental me-
thods and practicalities, there are many convergent ideas and common problems, 
as we tried to recall above, which would benefit from a unified perspective. 

There are good reasons to think that a unifying paradigm may come from the 
study of emerging self organization complex networks of loosely coupled agents, 
yet, as we have argued above, there are a number of challenging issues to deal 
with. 

The scientific enterprise is now somehow close to unbundle the basic founda-
tion of our consciousness and of our apperception of reality, and, it is clear that 
there are some circularity issues with the possible ‘explanations’, at least.  

We have in front of us deep problems, scientific and philosophical, which are 
not ‘easier’ than those with which our predecessors were able to cope in Galileo’s 
and Newton’s age. The prize for unbundling those issues might be a new industri-
al, economical and societal revolution. 
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Toward a Modern Geography of Minds,
Machines, and Math�

Selmer Bringsjord and Naveen Sundar Govindarajulu

1 Two of the Driving Questions

We herein report on a project devoted to charting some of the most salient points in
a modern “geography” of minds, machines, and mathematics; the project is funded
by the John Templeton Foundation, and is being carried out in Bringsjord’s AI and
Reasoning Laboratory. The project is motivated by a series of rather far-reaching
questions; for example, here are two of the driving questions:

Q1 What are the apparent limits of computational logic-based formal techniques in
advancing explicit, declarative human scientific knowledge in various domains, and
how can these limits be pushed/tested?

Q2 What have the fundamental, persistent difficulties of AI taught us about the nature
of mind and intelligence, and how can these difficulties be overcome by logic-based
AI (if indeed they can be)?

It will be immediately clear to the reader that both of these questions insist on a
link to formal logic. Why? Well, there are obviously versions of these two questions
which contain no reference to formal logic. You know this because all readers will be
aware of the fact that there are approaches to advancing human knowledge, and AI
as well, that premeditatedly reject formal logic. There are two reasons why both Q1

and Q2 make explicit reference to formal logic. One, the use of logic to understand
the human mind and advance its knowledge is just simply something that we are
passionate about, and something that perhaps we aren’t incompetent to pursue (e.g.,
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see [7, 8]). Two, we are partial to a conquer-and-divide strategy to attacking the
generalized versions of the two questions that abstract away from any particular
formalisms. If we can answer Q1 and Q2, then, for example, we shall have at least
made a small contribution toward an answer to: “What are the apparent limits of X
in advancing human scientific knowledge . . .?”

What are our answers to the pair above? In a nutshell, our answer to Q1 is that in
the realm of AI and computational linguistics, the apparent limit of our knowledge
of human language (amply reflected in the fact that, contra Turing and his well-
known prediction that by 2000 his test would be passed, we are unable to engineer
a computing machine able to converse even at the level of a bright toddler) is funda-
mentally due to the fact that AI and cognate fields have not yet managed to devise
a comprehensive logical system that can do justice to the fact that natural language
makes use, sometimes in one and the same sentence, of multiple intensional oper-
ators. For example, English allows us to say/write and understand such recalcitrant
sentences as: “Jones intends to convince Smith to believe that Jones believes that
were the cat, lying in the foyer now, to be let out, it would settle, dozing, on the mat
outside.” Were such a system in place, and implemented in working software, the
human knowledge of human language would be advanced beyond the current limits
on that knowledge.

Our equally brief answer to Q2: The difficulties of AI have taught us that be-
yond the challenge of rendering human language in computational terms, there is
this lesson as well: Whereas the human mind (at least in the formal sciences) can
routinely deal with concepts that are seemingly infinite in nature (e.g., transfinite
numbers), standard computing machines are paralyzed by such concepts, and asso-
ciated processes. For instance, while automated theorem proving has made impres-
sive progress, that progress has been completely independent of proof techniques
that for example make use of infinite models and infinitary inference rules (such as
the ω-rule).

The present chapter is devoted to fleshing out our answer to Q1, and we proceed
to that answer now.

2 Fleshing Out Our Answers

The project consists of five research thrusts that will flesh out our two answers; here,
in keeping with the necessity of narrowing the scope because of space constraints,
we provide encapsulations of only three of these thrusts:

T1 Multi-operator Intensional Logics. Here we strive to create logical systems suffi-
ciently expressive to capture information in natural-language sentences that simul-
taneously employ operators for knowledge, belief, perception, “tricky” conditionals
(e.g., subjunctive conditionals), and self-consciousness.

T2 Toward Automation of “Infinitary” Proofs. Here, we initially confine our attention
to propositions independent of PA, and hence examples of Gödelian incomplete-
ness. For example, how might a computing machine prove Goodstein’s Theorem?
We are seeking to answer this question.
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T3 Palette∞ Machines. Here we are specifying a cognitively plausible version of
Kolmogorov-Uspenskii machines that have super-Turing capability.1

In further narrowing of our coverage herein, in the present chapter we report on re-
cent, dramatic extensions to our cognitive event calculus (C EC ), which is the foun-
dation for thrust T1, and which is presented in its original, less-expressive form in
[4], where it’s used to solve the false-belief task. The C EC is a logical calculus that
has been used to solve many complex problems, such as arbitrarily large versions
of the wise-man puzzle [2]; and it’s currently being used to model and simulate the
task of mirror self-recognition (which we’ll explain below), and also to model cer-
tain economic phenomena. The extensions presented below enable us to model and
computationally simulate de se beliefs, propositional attitudes over time, nominals,
and communication acts. We focus herein on de se beliefs. As we will show, this
reach for the C EC marks progress in T1, and hence progress on Q1.

The remainder of the paper runs as follows. In § 3, we outline the need for ex-
pressive logics/systems and introduce the mirror test for self-recognition as a gen-
eral test-bed for systems modeling de se beliefs. In § 4, we outline six desiderata
that any system which hopes to model de se beliefs should satisfy, in particular if
it hopes to pass the mirror test for self-consciousness. In § 5, we present an aug-
mented C EC that can handle and differentiate de se beliefs from de dicto and de re
beliefs, and in § 6, we describe a preliminary system that can pass the mirror test
for self-recognition.

3 Expressivity

Why do we need logicist calculi expressive enough to handle multiple intensional
operators, including the gamut of those that can be considered epistemic in na-
ture? Consider the notion of cognitively robust synthetic doppelgängers, proposed
by Bringsjord. They could be viewed as advanced descendants of today’s personal
assistants. It is the year 2024, and everyone with a smart-phone has their own digi-
tal doppelgänger residing on their phones. The dopplegängers act on their owner’s
behalf, relieving them of the monotony of certain kinds of social interaction and
duties: ordering supplies, scheduling meetings, etc. To be able to achieve this, the
dopplegängers need to explicitly model their external world, their owner’s mental
states (e.g., desires, intentions, beliefs, knowledge, hopes etc.), and also those of
other similar artificial agents, and humans.

How might one achieve the above state-of-affairs by using schemes that are im-
poverished, for instance those based on representing physical and mental states enu-
meratively (e.g., finite-state based systems)? Even if one commits to using declara-
tive approaches such as first-order logic, we find that we soon run into problems. For
example, as soon as one tries to model knowledge in first-order logic, inconsistency
rears up, as can be seen in the classic proof shown in Figure 1. The proof here is

1 See [16] for Kolmogorov and Uspenskii’s specification of their machines and [23] for a
recent readable introduction by Smith.
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FOL ⊢ 

P1. evening_star = morning_star
{P1}  Assume 

P2. ¬knows(abe,reify(=-reified(evening_star,morning_star)))
{P2}  Assume 

P3. knows(abe,reify(=-reified(morning_star,morning_star)))
{P3}  Assume 

4. A ∧ ¬A
{P1,P2,P3}

Fig. 1 An Attempt at Modeling Knowledge in FOL

created and machine-checked in the Slate system [10], and the objects of knowledge
are not full-blown formulas (which would be impossible in FOL), but rather objects,
for instance strings. Such an approach is presented in [22].

Another motivation behind using expressive intensional logics is the pursuit of
a meta-logic as a representation language for natural languages that is consistent,
sound, and lossless. That is, given any possibly true natural-language sentence s, we
want to be able to express that sentence as a sentence S in some formal logic L with
an interpretation D and a proof calculus P such that the following meta-conditions
are satisfied:

M1 S does not cause a contradiction in the inference system; that is: S ��P ⊥
M2 S does not cause unsound inferences to be drawn; that is: S ��P R, where D �� R

M3 S should be lossless; that is: it should retain all the information present in s.

We believe that, as of now, no system comes close to satisfying the above condi-
tions. Our goal in this paper is to show that our modeling of de se beliefs yields a
calculus at least one genuine step closer to this trio of conditions. If one embraces
a logico-mathematico-computational approach, as we do, it’s perhaps not implau-
sible to regard our work as marking such a step. In order to make this step, we
accept a challenge — one that hinges on expressivity. In this paper, we focus on one
expressivity challenge: namely, the fact that in natural language (and in the think-
ing behind this language) we routinely make crucial use of the personal pronoun in
connection with mental states, especially those mental states that are epistemic in
nature: believing, knowing, and so on.

Toward this end of being able to capture de se beliefs, we isolate one particularly
fertile scenario: the mirror test for self-recognition, and surgically study it in the
context of an expressive system. Though the test does not contain explicit linguistic
communication, we note that the rich intensional information present in the test can
be cast into linguistic form, and this is what we seek to represent and analyze.
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3.1 The Mirror Test as a Test-Bed

The “mirror test” is traditionally regarded to be a test for self-consciousness in ani-
mals. Put briefly, to test for self-consciousness in an animal a:

1. anesthetize a and place a colored splotch r on a’s head;

2. awaken a and place it in front of a mirror;

3. if a removes the splotch, then declare that a is self-conscious.

For more details on the test, see Keenan’s [15], and for a summary of relatively
recent results, see Prior’s work on mirror-testing of magpies in [20]. Related prior
work in simulating the sensory and visual processing part of mirror-image recogni-
tion can be found in Takeno’s work on mirror-image discrimination in [25]. Takeno’s
work deals only with the image processing part of mirror recognition and did not
involve the classic splotch-removal task. In this experiment, a small robot R which
moves back and forth is queried to check if it discriminates among 1) R’s own mir-
ror image; 2) another robot which imitates R; 3) another robot controlled by R; and
4) a robot which behaves randomly. This work provides evidence that at least the
robotics side of the act of a simple agent recognizing itself in a mirror is feasible.
Since this work is not based on a declarative system, it is unclear how close the
system adheres to our three conditions — M1 to M3 — even for the simple task of
mirror-image recognition (versus the full mirror test).

The test itself is hardly robust, since there are many possible scenarios which
can give rise to false positives and false negatives. For example, a creature which
does not have any form of self-consciousness, either access or phenomenal, can pass
the test in one of the following ways: 1) the splotch is an irritant which causes the
animal to scratch it; or 2) the animal is behaviorally trained to wipe its forehead
when placed in front of a mirror. Also, a self-conscious creature can fail the test in
many ways: 1) it lacks vision or visual cognition; 2) it prefers having the splotch;
or 3) it cannot move its arms. Though there could be many such false negatives and
false positives, we are interested in understanding what kind of cognitive faculties
a creature needs to possess in order to truly pass the test. We thus seek, in keeping
with the project as defined at the outset of the chapter, to analyze the intensional
capabilities required of agents that have to pass the test genuinely.2

4 The Six De Se Desiderata

There are six desiderata that we believe must be satisfied by any system that hopes
to honestly pass the mirror test cognitively, and not just behaviorally. For a system
to pass a test cognitively, the system should display the necessary propositional
attitudes, and mental states generally, that the test is intended to detect. We make
the desiderata more precise by specifying the desiderata in a syntax similar to that

2 On a related note: Usually an individual creature does not behave in the same fashion in
multiple trails of the test; therefore, the trails are randomized and repeated multiple times.
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of the C EC , but we warn the reader that our investigations in modifying the C EC
are not finalized. The C EC is a multi-sorted first-order modal logic in which modal
operators specify intensional contexts. The operators are: the knowledge operator
K, the belief operator B, the percept operator P, the intention operator I, the desire
operator D, the communication operator S, and the common-knowledge operator
C. We also plan to incorporate scoped terms for more naturally specifying natural
language quantifiers such as “the”. (See Hardegree’s [14] for an introduction to
scoped terms and Kearns’ [14] for an introduction to quantifier terms in natural
language.) After we present the desiderata, we show our agent, Cogito, passing the
test.

4.1 System-Level vs. Agent-Level Reasoning

Since we’re doing AI and computational logic (i.e., to abbreviate — in keeping
with [9] — LAI), we must have a formal logic that reflects the fact that there will
be a “God-level” executive system, itself knowing and believing etc. with respect
to individual agents, human and machine. The “God-level” system refers to either
the underlying system in a multi-agent simulation or an intelligent agent in a non-
simulation environment that does the reasoning.

We achieve this as follows. We start with a sort for agent symbols: Agent, and
for each agent a ∈ Agent we assign its own logic and inferential system La, which
of course captures reasoning by a. Each logic has a set of distinguished indexical
symbols; specifically: now and I, to represent the present time and the agent. Rea-
soning by the underlying God-level, or native, system is then to be carried out in
L , the “top-level” logic. In our mirror-test-passing system, the first person agent
Cogito is represented by the system’s logic L , and the other agents are represented
by La. Reasoning about other agents can then be achieved by formalizing La in L .

4.2 Inferential Machinery Tied to Agents

Given the brute empirical fact that human-level intelligent agents vary considerably
in their inferential machinery, we need to have a logic of self-consciousness (or
for that matter any robust epistemic logic that covers multiple agents) that allows
inferential machinery to be indexed to individual agents. We show how this could
be done with the following illustration.

To represent present first-person reasoning by Cogito that knowledge about him-
self is belief about himself, we could for example use:

K(I,now,φ(I∗)) �Cogito B(I,now,φ(I∗))

Past third-person reasoning by Descartes that Cogito’s knowledge about himself is
Cogito’s belief about himself is then represented by:
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K(cogito,τ,φ(cogito∗)) �Descartes B(cogito,τ,φ(cogito∗))
� τ < now

Differing inferential capacities can then be captured by different proof systems for
different agents.

4.3 Constraints on De Dicto Beliefs

De dicto belief does not allow existence to be proved. The state-of-affairs consisting
in Jones believing that the cat is on the mat does not allow proving that there is a
cat; nor is a proof of the existence of a mat possible. In a de dicto case of belief, it
is not possible to prove that what is believed in fact obtains.

Agent a believing that an F has property φ does not mean that there is an F or
that it has property φ.3

B(a, t,∃x :F φ(x)) �� ∃x :F φ(x)
B(a, t,∃x :F φ(x)) �� ∃x :Ob j F(x)

For example, John believing that a black cat is in the room does not necessarily
mean that there is a black cat or that it is in the room.

4.4 Constraints on De Re Beliefs

De re belief does allow existence to be proved, but we cannot prove that the thing
which exists and is the target of belief does have the particular properties that the
agent believes it to have.

Agent a believing of an F that it has property φ means that there is a thing which
is F , but need not mean that it has property φ.

B(a, t,∃x :F φ(x)) �� ∃x :F φ(x)
B(a, t,∃x :F φ(x)) � ∃x :Ob j F(x)

As an example, John believing of a black cat that it is in the room means that there
is a black cat, but does not necessarily mean that it is in the room.

4.5 Constraints on De Se Beliefs

The logic of self-consciousness must be such that, when an agent believes that he
himself (she herself) is F and correct, there is no agent term t in the logic such that
t therefore believes that t is F. Also, if we have for all agent terms t, that t believes
that t is F, we do not automatically get that an agent believes that he himself/she
herself is F.

3 Since we use a multi-sorted language, our quantifier variables are sorted. This is indicated
as ∃var : SortName.
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For all standard terms t in the language such that t believes that t has property φ,
it doesn’t follow that there is an agent a believing that he himself (she herself) has
property φ. Also, a pure de se belief does not entail a belief by an agent about some
other agent which happens to be itself.

∀t : Agent B(t, time,φ(t)) �� B(I, time,φ(I∗))
B(I, time,φ(I∗)) �� ∃t : Agent B(t, time,φ(t))

For a case in point, the most brilliant student in the class believing that the most
brilliant student in the class will get an A grade does not mean that the most bril-
liant student in the class believes he himself will get an A grade. For seminal and
detailed analyses of criteria for such logics see Castañeda’s essays in [11]; and for
a more encapsulated treatment see Hardegree’s [14]. The SNePS reasoning system
also includes a representation for de se beliefs; see [21].

4.6 Pure De Se Beliefs Don’t Have an Extension

An agent’s self-conscious beliefs (with its personal pronoun) can be extensive in an
interior psychological sense, yet it can be that no interior belief can enable a proof
that the agent has exterior physical attributes.

In other words, the personal pronoun has no straightforward, empirical descrip-
tive content. In fact, even its perfectly correct use does not entail that the user is
physical, and certainly does not entail that the user has any particular physical at-
tributes. Imagine that a person wakes in total darkness, and with amnesia. Though
the person can have numerous beliefs about themselves (I believe I’m afraid.), noth-
ing can be deduced automatically by the person about his own physical attributes.

How can this remarkable aspect of first-person belief be achieved? The path we
are currently exploring is to divide C EC fluents into mental fluents and physical
fluents:

B(I, t,holds(afraid(I∗), t)) �Cogito K(I, t,holds(afraid(I∗), t))
B(I, t,holds(tall(I∗), t)) ��Cogito K(I, t,holds(tall(I∗), t))

5 The Logic of I

We show our initial steps in constructing a logic that can satisfy all six desiderata.
We plan to achieve this by modifying the C EC ; the syntax of the modified C EC
and some of its inference rules are shown in Figure 2. Notably, this version of C EC
differs from the previous versions in 1) having time-indexed modal operators; 2) the
operators D, I, and S; and 3) machinery for de se beliefs. Only the last addition
concerns our purpose here. We refrain from specifying a formal semantics for the
calculus as we feel that the possible worlds approach, the popular approach, falls
short of the tripartite analysis of knowledge (Pappas [19]). In the tripartite analy-
sis, knowledge is a belief which is true and justified. The standard possible-worlds
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semantics for epistemic logics skips over the justification criterion for knowledge.4

Instead of a formal semantics for our calculus, we specify a set of inference rules
that capture our informal understanding and semantics underlying the calculus.

We now give a brief informal interpretation of the calculus. We denote that agent
a knows φ at time t by K(a, t,φ). The operators B, P, D, and I have a similar in-
formal interpretation for belief, perception, desire, and intention, respectively. The
formula S(a,b, t,φ) captures declarative communication of φ from agent a to agent
b at time t. Common-knowledge of φ in the system is denoted by C(t,φ). Common-
knowledge of some proposition φ holds when every agent knows φ, and every agent
knows that every agent knows φ, and so on ad infinitum. The Moment sort is used
for representing time points. We assume that the time points are isomorphic with N;
and function symbols (or functors) +,−, relations >,<,≥,≤ are available with the
intended interpretation.

The C EC includes the signature of the classic Event Calculus (EC) (see Mueller’s
[17]), and the axioms of EC are assumed to be common knowledge in the system
[3]. The EC is a first-order calculus that lets one reason about events that occur in
time and their effects on fluents.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action  Event |
Moment | Boolean | Fluent | RealTerm

f ::=

action : Agent×ActionType → Action

initially : Fluent → Boolean

holds : Fluent×Moment → Boolean

happens : Event×Moment → Boolean

clipped : Moment×Fluent×Moment → Boolean

initiates : Event×Fluent×Moment → Boolean

terminates : Event×Fluent×Moment → Boolean

prior : Moment×Moment → Boolean

interval : Moment×Boolean

∗ : Agent → Self

t ::= x : S | c : S | f (t1 , . . . , tn)

φ ::=

t : Boolean | ¬φ | φ∧ψ | φ∨ψ |
P(a, t,φ) | K(a, t,φ) | C(t,φ) |
B(a, t,φ) | D(a, t,φ) | I(a, t,φ) | S(a,b, t,φ)

Rules of Inference

C(t,P(a, t,φ)→ K(a, t,φ))
[R1 ] C(t,K(a, t,φ)→ B(a, t,φ))

[R2 ]

C(t,φ) t ≤ t1 . . . t ≤ ln

K(a1 , t1 , . . .K(an , tn ,φ) . . .)
[R3 ]

K(a, t,φ)

φ
[R4 ]

C(C(t,K(a, t1 ,φ1 → φ2))→ K(a, t2 ,φ1)→ K(a, t3 ,φ3))
[R5 ]

C(C(t,B(a, t1 ,φ1 → φ2))→ B(a, t2 ,φ1)→ B(a, t3 ,φ3))
[R6 ]

C(C(t,C(t1 ,φ1 → φ2))→ C(t2 ,φ1)→ C(t3 ,φ3))
[R7 ]

C(t,∀x. φ→ φ[x �→ t])
[R8 ] C(t,φ1 ↔ φ2 →¬φ2 →¬φ1)

[R9 ]

C(t, [φ1 ∧ . . .∧φn → φ]→ [φ1 → . . .→ φn → φ])
[R10 ]

B(a, t,φ1) B(a, t,φ2)

B(a, t,φ1 ∧φ2)
[R11 ]

S(s,h, t,φ)

B(h, t,B(s, t,φ))
[R12 ]

I(a, t,happens(action(a,α), t))

P(a, t,happens(action(a,α), t))
[R13 ]

Fig. 2 Cognitive Event Calculus

4 The possible worlds approach, at least in its standard form, also suffers from allowing logi-
cally omniscient agents: agents which know all logically valid sentences. We feel solutions
such as impossible possible worlds are unacceptable, as they do not accord with the notion
of a normal cognitive agent, which we seek to model in the first place.
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5.1 Modifications to Handle First-Person Attitudes

In order to represent and distinguish self beliefs by an agent a from beliefs about
an agent who happens to be a, we need a way of distinguishing agents as actors
(denoted by the res of an agent) from agents having roles (denoted by guises of an
agent). This is easily understood by the analogy of a play in which different actors
might have different roles on different days. The roles may change (varying guises),
but the actors remain the same (constant res). That is, each agent has one and only
one res but can have many guises. In the C EC , the guises of agents are specified by
the sort Agent and res is specified by the new sub sort Self � Agent and the function
symbol ∗.5 The res of an agent is specified using the ∗ function: ∗ : Agent → Self;
this is expressed in postfix form as agent∗ — assuming that the agent expression
does not contain any subexpression containing the ∗ functor. The unique res and
varying guises of an agent can be thought of as the unique identity and varying
names of the agent in Grove’s [13, 12]. The following axioms enforce the res-guise
distinction.

∀a : Agent,∃s : Self. (a∗ = s)

∀a : Agent,s1 : Self,s2 : Self.(a∗ = s1 ∧a∗= s2 → s1 = s2)

In order to handle first-person, present-tense propositional attitudes, we include two
distinguished symbols, I and now. Syntactically, they belong to sorts the members
of which can be co-substituted with symbols from Agent and Moment in the C EC .
Given that we have yet to give a non-possible-worlds semantics for our system, we
do not at present have a semantic description for these constants, but we note that
their intensional meaning, or sense or sinn, is different from that of all symbols in
Agent and Moment.

5.2 Example: First-Person De Dicto, De Re, and De Se

Consider our testing situation, in which our agent Cogito looks at a mirror and sees
a red splotch on his forehead. There are three possible ways we could represent
Cogito’s belief in LCogito when he sees the red splotch: de dicto, de re, and de se. Of
these, only the last one accurately captures the situation intended in a mirror test.

De dicto: This is a representation of the sentence “I believe that the agent named “Cogito”
has a red splotch on his head”. This is represented in the C EC as follows, assuming that
the signature of named is named : Self×Object → Boolean.6

B(I,now,∃x : Agent(named(x,“Cogito”)∧ red-splotched(x)))

The above representation dictates that Cogito be aware of the name “Cogito.” This rep-
resentation fails to differentiate our intended situation from another situation in which
there is another agent named “Cogito” who has a red splotch on his head, our Cogito

5 Readers may note that the analogy with actors breaks down here.
6 Names are represented in the Object sort in the C EC .
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knows the other agent by name, and our Cogito has the above thought when seeing the
other Cogito with a red splotch on his head.

De re: This is a representation of the sentence “I believe of the agent named “Cogito” that
the latter has a red splotch on his head.” This is represented in the C EC as follows

∃x : Agent(named(x,“Cogito”)∧B(I,now,red-splotched(x)))

This representation does not dictate that Cogito be aware of the name “Cogito.” This
representation fails to differentiate our intended situation from another situation in which
there is another agent named “Cogito” which has a red splotch on his head, and our
Cogito has the above thought when seeing the other Cogito with a red splotch on his
head.

De se: This is a representation of the sentence “I believe that he himself has a red splotch on
his head.” This is represented in the C EC as follows

B(I,now,red-splotched(I∗)))
Since each agent can be mapped to one and only one self symbol, we can accurately
represent the situation intended in the mirror test using the representation immediately
above.

6 Cogito and the Mirror Test: A Preliminary Simulation

Now, the question that we seek to ask is: Given that Cogito sees a red splotch in the
mirror (= in his reflection), what is it that is cognitively necessary for the agent to:
believe that he himself has a red splotch on his head, and then remove the splotch?
We can assume that the visual processing of face detection and splotch detection on
the face is carried out by lower level systems.7

All formulae hence-forward are assumed to be in LCogito. To facilitate discussion
and to refer to formulae in text and formal reuse of formulae, we label formulae;
for example, Label : α denotes a formula α labeled with Label. Now, suppose we
have the following proposition inferred at time t0 by a lower-level sensory system:

Perceivesplotch : P(I,now,∃x : Agent. red-splotched(x))

This formula states that at time t0 Cogito sees that there is an unnamed agent which
has a red splotch on its head. We need to infer the following formulae at some t1 and
t2 respectively (with t2 ≥ t1 ≥ t0):

Believesplotch : B(I,now,red-splotched(I∗))
Intendwipe : I(I,now,happens(action(I∗,wipe-fore-head(I∗)),now))

The first proposition states that the Cogito believes that he himself has a red splotch;
note that this is a de se belief. The second proposition states that Cogito intends now
(in the sense of intending to act) to wipe his own forehead now.

7 We are using OpenCV [6] for face detection.
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We now pose our question more succinctly: What is a realistic set of formulae Γ
such that:

Γ+Perceivesplotch �Cogito Believesplotch ∧Intendwipe

Figure 3 shows the set of axioms Γ1 that we have used in a preliminary simulation
of Cogito, in which passing of the test is secured. We also have axioms connecting
beliefs, desires, and intentions not shown here; a general theory of these can be
found in Woolridge’s book [26].

Imitation If I see another agent a perform the same actions as me twice concurrently,
then I know that the other agent is my mirror reflection

Imit : ∀(t1, t2 : Moment, a : Agent, act1, act2 : Action)(
K(I, t1, happens(action(I, act1), t1)) ∧K(I, t1, happens(action(a, act1), t1))

K(I, t2, happens(action(I, act2), t2)) ∧K(I, t2, happens(action(a, act2), t2))
)

→ K(I, now,mirror(I, a))

Wave Left I know that I wave left at time t1 and I can perceive this action of mine.

Waveleft : K(I, t1, happens(action(I, waveleft), t1))∧
P(I, t1, happens(action(I, waveleft), t1))

Wave Right I know that I wave right at time t2 and I can perceive this action of mine.

Waveright : K(I, t2, happens(action(I, waveright), t2))∧
P(I, t2, happens(action(I, waveright), t2))

Mirror Physics If I see another agent a with a red splotch on its head, and if I believe
that the other agent is my mirror reflection, then I believe that I too have a red
splotch.

Physicsmirror : ∀(a : Agent)(
P(I, now, holds(red -splotched(a), now)) ∧B(I, now,mirror(I, a))

)

→ B(I, now, holds(red -splotched(I∗), now))

Wipe Action I know that if I myself wipe my own forehad, the splotch will be gone .

Wipeaction : K(I, now, terminates(action(I∗,wipe-fore-head(I∗)), red -splotched(I∗), now))

Planning A simple planning axiom.

Planning : ∀(f : Fluent, α : ActionType)

I(I, now,¬holds(f, now)) ∧K(I, now, terminates(action(I∗, α), f, now))
→ I(I, now, happens(action(I∗, α), now))

No Splotch I do not want the splotch.

Nosplotch : ∀(t : Moment)D(I, t,¬holds(red -splotched(I∗), t))∧
B(I, t,¬holds(red -splotched(I∗), t))

Fig. 3 Propositions Used in the Mirror-Test Simulation
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(setf 
(gethash 'know-other-is-me *mind*) 
(!'modus-ponensmodus-ponens (!'uspecuspec *imitation-axiom*
                          (list (%'t1) (%'t2) (%'other) (%'wave-left)
(%'wave-right)))
                 (!'bothboth
                       (!'left-andleft-and *wave-left*)
                       (!'dr4dr4 (!'right-and *wave-left*))
                       (!'left-andleft-and *wave-right*)
                       (!'dr4dr4 (!'right-and *wave-right*)))))
(!'dr5dr5  (gethash 'know-other-is-me *mind*))
(!'snark-provesnark-prove 
($`(believes ,(% 'I) now (holds (red-splotched (* ,(% 'I))) now)))  
(list  *mirror-physics* *see-red-dot* (!'dr5dr5  (gethash 'know-other-is-me
*mind*))))
(!'modus-ponensmodus-ponens 
(!'uspecuspec *planning-axiom-simple* (list (%'(red-splotched (* I)))
                                        (%'(wipe-fore-head (* I)))))
(!'bothboth (gethash 'intends-to-remove-splotch *mind*) *wipe-action* ))

Fig. 4 Cogito Removing the Dot and a Part of the Simulation

We now go through the axioms. Consider two possible situations: If we assume
that the agent under consideration can recognize his own self-image in the mirror,
then a part of the problem is trivially solved. The situation gets much more realistic
if we assume that the agent cannot instantaneously recognize itself. This can be the
case for non-humans, artificial agents, and children who are just beginning to rec-
ognize their self-images — or even for adult humans under peculiar conditions; for
instance under amnesia when looking at a mirror which is not distinguishable from
its surroundings. Such “compromised” agents usually experiment in front of the
mirror by performing actions to see whether or not the image imitates themselves.
This goes on for some time, and then there is an act of recognition based on the
image repeating the agent’s actions. (See [18] for experiments and discussions on
these issues in children.) We consider the case of an agent that has to learn through
imitation that an agent it is perceiving is its own mirror image. We could say that if
an agent a knows that some other agent a′ performs the same actions as this agent,
then a knows the other agent is its mirror image. This then gives rise to the Imit
axiom shown in Figure 3.

Asendorf et al. have shown in [5] that children can fail to pass the test if they have
no intention of removing the splotch. To model this, we include the axiom Nosplotch,
which captures Cogito’s desire to not have the red splotch on him.

We also need to assume that Cogito has some knowledge of the external world;
that is, knowledge concerning some physics of the world formalized via the Event
Calculus (see [17]). Very trivially, Cogito should know that the action of removing
the splotch from and by himself leads to the fluent red-splotched(I∗) not holding.
We also need to account for the agent’s knowledge that properties that hold for its
mirror image hold for itself too.

Γ1 is sufficient to pass the test: Figure 4 shows Cogito about to remove the
splotch, and a part of the semi-automated proof used in the simulation. The sim-
ulation was implemented as a semi-automated denotational proof system (see [1])
on top of the SNARK automated theorem prover (see [24]).

One can object that a lot of assumptions about the agent have gone into our
modeling. We note that these assumptions are usually extant under the surface in
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current AI research; our modeling has brought forward those assumptions for further
scrutiny and study. Some of the assumptions are:

1. The agent is a well-formed agent in that it has a coherent set of propositional attitudes;
it doesn’t have contradictory intensions.

2. The agent has an underlying well-formed physical model of the world, realized in our
example through the event calculus.

3. The agent’s propositional attitudes are connected with the knowledge of the world via
planning axioms.

Our solution also assumes that the agent has enough knowledge about mirrors,
self reflection, and actions; this models a grown human, or an animal which has
“learned” about mirrors. Our next step in this process is to model a child which
learns about mirrors and then passes the test. A more advanced simulation would
start with a less advanced agent, one just starting to learn about the world, and then
proceed to the mirror test after acquiring Γ1.

7 Conclusion

As part of the research thrust T1, aimed at responding favorably to the driving ques-
tions Q1 and Q2 that motivate our attempt to set out a modern geography of minds,
machines, and math, we have presented augmentation of the C EC that enables us to
model robust de se beliefs. Specifically, this augmentation enabled us to construct a
preliminary simulation of an agent that verifiably passes the mirror test. This brings
the C EC one step closer to the goal of being a comprehensive meta-logic for natural
language, despite the many intensional operators that — in a logicist approach — are
found in such language. A detailed comparison with extant systems, such as SNePS,
on the six desiderata, is the next step forward in planned future work. But we will
continue augmenting the C EC beyond this step, to proceed further along T1. After
comparison, the next step will be to complete specification of our “argument-based”
formal semantics, which as we have said steers clear of possible worlds.
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Practical Introspection as Inspiration for AI 

Sam Freed* 

Abstract. AI has progressed less than other fields of information technology due 
to a conceptual impasse. Though much effort has been employed to overcome this 
situation, often it has been from a restricted point-of-view e.g. philosophy alone or 
algorithms alone. This paper argues for (and exemplifies) an inter-disciplinary tac-
tic for advancing the field of AI that integrates introspection with programming. 
The paper has two parts: The first outlines an introspective approach that has been 
largely overlooked and answers some of the (rather heated) arguments that have 
caused introspection to be sidelined. The second part offers a practical application 
of this approach - presented as an algorithm.  

1   Introduction 

The gulf between philosophical and technical notions of AI is part of a more gen-
eral cultural malaise of the last two centuries. Snow (1961) diagnosed a split be-
tween two distinct cultures, “literary intellectuals at one pole - at the other scien-
tists … Between the two there is a gulf of mutual incomprehension – sometimes 
(particularly amongst the young) hostility and dislike”. The gulf between (some) 
philosophers and AI practitioners1 arises specifically from their commitment to 
different notions of exactitude. Phenomenologists look to describe Human thought 
processes as accurately, as truly, as “just so” as possible, and for this purpose they 
even go to the lengths of inventing new languages of exactitude (see especially 
Heidegger 1962). I will call this requirement “accuracy”. Programmers require a 
very well defined sort of exactitude – when programming a computer every term 
must mean precisely one thing and not another. This results from the way the un-
derlying electronic circuits (and mathematical models) are designed: with fully 
distinct states, iterations and instructions. I will call this requirement “precision”. 
Note that programmers too have invented their own programming languages. Both 
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sides of this cultural gulf shun common English (or German) because of their re-
spective commitments to two very different types of exact truth. 

Within the part of the AI community that takes introspection seriously at all, 
there is a schism between technologists who use rudimentary (and usually wildly 
optimistic) introspection, and the Phenomenologists (such as Dreyfus 1979) who 
are so possessed by the need for accuracy in describing the human condition that 
they ignore the fact that AI is a technology, where precise code must be written for 
anything to be tested. 

I contend that a practical middle ground on introspection could lead to useful 
AI and to a better understanding of the mind. A more accurate level of introspec-
tion than the technologists have produced so far will allow us to expose (some ap-
proximations of) the sub-verbal Human thought processes. This level - though not 
using words for all concepts (but rather imagery and/or rough pointers) - still 
maintains patterns precise enough to be modelled on a computer.  

I propose that AI based on introspective models would have the following 
benefits: 

1. As a Human-like technology, its function and considerations would be 
more transparent to Humans. This would allow for smoother interac-
tion and easier integration of robots into the community.  

2. They would produce more interesting ‘life-like’ models of the human 
mind. 

3. By simply being a radically different approach, some of the previously 
difficult problems in AI may become more tractable. 

2   Introspection, Science and Technology 

2.1   Background 

Introspection was used as one of the first methodologies in scientific psychology 
by Wilhelm Wundt (Boden 2006), but was declared an anathema to scientific psy-
chology in the founding papers of behaviorism (Watson 1913). The rejection of 
introspection was as a source of scientific facts, and with this position I have no 
argument.  

Let us take a short detour into philosophy of science, where a distinction is 
made between the context of discovery and the context of justification (Hoynin-
gen-Huene et al 2006). The context of discovery is where a scientist’s ideas come 
from: it can use anything as inspiration: a falling apple, even a dream. The context 
of justification is where a scientist must be methodical, empirical, etc.  

Looking at introspection as a tool for discovery rather than for justification one 
can see no reason to reject it, for in the context of discovery anything and every-
thing goes. This holds also for discovery in technology – in technology if some-
thing works, that is good enough – and “good enough”2 is both good (if the  
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technical requirement has been met), and enough (as it is not the role of technol-
ogy to solve issues of science or philosophy). So since AI’s interest is both in de-
veloping software as a technology and in developing tentative models for the 
study of the mind, introspection should have its fair hearing. 

Introspection was used during the formative years of GOFAI (Solomonoff 
1968): Newell and Simon (1976) explained how they had formed their ideas about 
chess-playing machines using introspection. However, their introspection was 
“optimistic”, in that they described their method of solving the problem of chess 
not in a natural, human way, but in an idealized manner; A manner in which they 
seem to have never made mistakes - as if they were rational (and infallible?) in all 
their thoughts (later the common-sense movement moved away from GOFAI’s na-
ïve exaggeration of the role of logic in thought)3. 

Introspection is also the basis of phenomenology. Dreyfus, its chief proponent 
for AI, is a fixture in the AI world (McCorduck 1979). However, Dreyfus’s  
standards on phenomenological accuracy are so high as to be technologically im-
practical. The descriptions required by phenomenology are not couched in a ter-
minology that makes sense to a programmer: a computer program has to be 100% 
specific, clear and precise. Phenomenology aims to describe our subjective expe-
rience of our own mind as accurately as possible, but these are different types of 
exactitude. In fact, it is Dreyfus’s main argument that human thinking (described 
accurately) cannot in principle be programmed because of this mismatch. Surpri-
singly having made this claim, central to his book (1979), Dreyfus goes on to sur-
vey various programming efforts towards “Heideggerian AI” and critiques them 
individually (2007). 

2.2   Practical Introspection 

We have seen an inherent conflict between introspective, subjective accuracy on 
the one hand, and the objective precision of programming on the other hand. How 
can we turn this impasse into an opportunity? I propose a medium-accuracy  
approach to Introspection – neither optimistically naïve (Newell & Simon), nor 
phenomenologically accurate (Dreyfus) – but practical, and therefore necessarily 
approximate. If we can describe our thought-processes even inaccurately in termi-
nology that is precise enough to be programmed, then we have a source of inspira-
tion, of ideas, for (a) technologies and (b) tentative models of cognition, the two 
central roles of AI. 

Here is an example of the sort of observation that is useful, and all-too-often 
discarded. Papert, in an interview given to McCorduck (1979), mixes some perti-
nent observations with beautiful introspection: 

“We are to thinking as Victorians were to sex. We all know we have these horrible 
moments of confusion when we begin a new project, that nothing looks clear and 
everything looks awful, that we work our way out using all sorts of odd little rules of 
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thumb, by going down blind alleys and coming back again, and so on, but since 
everyone else seems to be thinking logically, or at least they claim they do, then we 
figure we must be the only ones in the world with such murky thought processes. We 
disclaim them, and make believe that we think in logical, orderly ways, all the time 
knowing very well that we don't. And the worst offenders here are teachers, who 
present crisp, clean batches of knowledge to their students, and look as if they 
themselves had learned that knowledge in a crisp, clean way. It didn't happen that 
way, but the teachers don't admit it, and the students groan inwardly, feeling so 
hopelessly dumb”. 

In what I called “optimistic introspection”, as in much of GOFAI, the problem 
space is first formalized, and then a formal solution is found and programed. This 
is the origin of a great number of AI systems that boil down to some sort of so-
phisticated data structure, which can be later searched (e.g. Deep Blue). In intros-
pection, conversely, we seek to solve any problem informally first, as common 
human beings, and only later try to formalize and program the verbiage that is de-
rived from this introspection. It is possible that this difference of approach will be 
a source of solutions to problems that have so far been unbreakable. 

Introspection can be augmented with observation – the point here is not to 
found a new creed: “Only Introspection!” - but to find as many programmable 
models of the actual rather than the idealised mind, that are novel, useful as tech-
nology, and/or lead us closer to having the building blocks for an understanding of 
the mind. 

2.3   Arguments for and against Introspection 

A sceptic would argue that the mental as exposed by introspection is not what is 
really going on – what is really going on is in the (very incompletely understood) 
“wetware”, as explored by neurology (Libet et al 1983). This hits at the heart of 
the schism between the introspection-loving phenomenologists and the hard scien-
tists. This position also threatens to open up the whole Mind/Body-problem can of 
worms. 

I do not wish to take sides in this schism but to see what benefit may be had in 
some middle ground – without any metaphysical commitments. This may well be 
a very narrow middle ground, but I am confident that it contains useful and inter-
esting ideas for the field of AI.  

The difference between the mental-phenomenological and the physical-
scientific worlds is a difference of category (see Descartes’ dualism), but I will 
leave that debate to the metaphysicians for now.  

I wish to take a more pragmatic line here, and accept that there are distances 
between (a) what is going on and our subjective experience of it, and (b) our sub-
jective experience and our verbal description. However, these distances are not in-
surmountably large. If this were not true we could not teach each other mental 
tricks like mnemonics, arithmetic (think of long division) or “mental chess” using 
language. So I can accept that distances (a) and (b) exist and may be huge, from a 
scientific point of view, but my contention is that they are not so large as to make 
introspection “noise”. 
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Moreover, Libet's experiment (1983) has shown the primacy of the neuro-
electrical over the intentional only in short-term decisions. Pacherie & Haggard 
(2010) argue that intention, planning, and other purely mental activities are the on-
ly available explanation we have for how Humans conduct themselves in the me-
dium term. 

It is difficult if not impossible to factually separate “good” from “bad” intro-
spection. Who can say what is going on in someone else's mind? However, the 
proof of the quality of the introspection (in this context) can be judged by the fe-
cundity of the resulting AI algorithms. Again, I am not arguing for introspection 
as a source of facts, but of ideas – of inspiration. Ultimately the proof of practical 
introspection will be in the resulting algorithms. 

3   Examples of Observations 

Let me now turn to the second, more practical part of this paper. 
Here are two examples of my own introspective description of my thought 

processes, which I have checked informally with several others who testify to hav-
ing similar observations. It is on the basis of this informal verification that I use 
the plural “we” and not the singular “I”. Later in this paper these descriptions will 
be used as a basis for an algorithm. 

3.1   Informal Temporal Sequences - Sounds Right? 

We think, speak and operate in sequences, that we learn from imitating others or 
from our own experience. We reconstruct each sequence from our own recollec-
tion of a past time in which that sequence occurred. These sequences underlie our 
habits (of thought and action) - we continue using them as long as they work well.  

For example (without entering into any debates with Chomsky) syntax is a 
template, a sequence, in that the same structure can work for this noun or that, this 
verb or that, etc. As syntax is a template for words that produces sentences, music 
is a sequence of tones that produces phrases, a recipe is a sequence to make a 
cake, and our daily habits are sequences of small actions building complex ac-
tions. We all have sequences for wiping down a table with a cloth (are you the 
type that lets the crumbs fall off the edge?). Nested habits are similar to recursion 
(in the linguistic sense) in syntax, but less formal, and with finite (single decimal 
digit) depth. 

A main characteristic of these sequences is that they (and the template they 
“represent”) unfold in time – with certain prosody. Prosody is a combination of 
the rhythmic, temporal elements with stress and intonation. In our case, the pros-
ody extends not only to speech but also to action: it too has a tempo, stress, and 
some equivalent of intonation. These elements are present also in pre-verbal rea-
soning and in habits. An interesting piece of evidence pointing in this direction is 
our use of “sounds right/wrong” or “rings true” when evaluating ideas. Does the 
idea match a pattern? Does it “sound right”? 
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3.2   Multiple Chains of Thought 

We think in time, but more than one temporal sequence is present in our mind at 
any moment. These can be finitely nested (“recursive”), a habit of going to work 
in the morning is part of a usual daily sequence, but “going to work” is in itself a 
compound and so on. Moreover, we also do or think of several things at once, of-
ten with some “crosstalk” between the tasks. This is similar to multi-threading in 
operating-system design, in that the various “threads” can work together (as op-
posed to multi-tasking, where each task lives in its own separate memory-space). 
These concurrent sequences do not usually have a prominent starting or finishing 
point – they seem to emerge and submerge pretty unconsciously. Some of the 
thoughts are “consciously experienced” and hence the event of having thought X 
can become an input to other thoughts. 

We have explored some introspective observations about exactly how we think. 
Now I will turn to some supporting arguments, and then I will show an algorithm 
derived from these observations. 

4   Supporting Evidence from Philosophy & Education 

As argued above, introspection should be counted as a legitimate source of inspi-
ration for AI, without any further justification. However, in this case there are two 
reasons to seek supporting evidence for the proposed model from places other than 
introspection.  

First, the effort (and hence costs) involved in programming a new model may 
be significant. The effort of formalizing ephemeral introspection (couched in in-
formal language) into precise algorithms is significant, and then there is the actual 
time taken programming and debugging a new model. Some weeding out of the 
wilder ideas is warranted on these economic grounds alone. 

Second, in the context of the current paper (proposing what for many may be an 
objectionable model based on an objectionable approach) it is of value to see how 
these ideas are supported by more conventional arguments. 

Beyond introspection, support for the existence of a sub-verbal multi-sequence-
based infrastructure underlying our mental life comes from two arenas of educa-
tion in which mistakes are often made: logic and mathematics. 

4.1   Fallacies and Errors 

Logic and fallacies have the same form, of “thought templates”. There is no rea-
son to believe that the structural underpinnings of correct, logical thought and of 
incorrect, non-logical thinking (fallacies) are different. This underlying capacity 
for logical (and illogical) sequences is also the basis of our skills in mathematics, 
and Papert's murky “rules of thumb” (section 2.2 above).  

Education is the process of training in the use of logic and not fallacies. Socra-
tes spent many a day convincing people of the advantages of logic over their pre-
vious thought-habits – that is an educated distinction, not an inbuilt one. 
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Let us look at some of these fallacies, and how common they are: 

Affirming the consequent 

1. If P, then Q. 
2. Q. 
3. Therefore, P. 

When presented as logic, this is manifest nonsense. But if I were to say: “If I win 
the lottery, I'll be rich”, and a week later I would say: “I'm rich”. Would that not 
lead many to suppose that I have won the lottery?  

Politician's Fallacy: 

1. We must do Something. 
2. X is Something. 
3. Therefore, We must do X. 

Appeal to consequence (Argumentum ad bacalum): 

1. If X accepts P as true, then Q. 
2. Q is a punishment on X. 
3. Therefore, P is not true. 

This can explain a lot of education - consider this conversation in kindergarten: 

1. Child: two plus two is a lizard. 
2. Adult: Two plus two is four.  

And then the adult continues with one of: (a) “You should know that!” or (b) “If 
you say that again then Q!” Which are one and the same thing – threatening a 
child with ridicule, or other consequences. 

Mal-Rules 

The phenomena of mistakes amongst the young is not constrained to logic vs. fal-
lacies, but is also found in mathematics. In the field of computer-based education, 
there is an effort to model and understand “mal-rules” – the “rules” of algebra that 
secondary school students “assume” in their erroneous assignments. These mal-
rules are described in formulae such as “(N-TO_RHS ADD SUBTRACT 
SOLVE)” (Moore & Sleeman 1988).  

From a Darwinian point-of-view, the infrastructure of being able to think, even 
using flawed structures, seems to be sufficient to human success - people who are 
not well educated are not a dying breed. 

Having seen the promise of thought-sequences from various angles, we are now 
ready to demonstrate programing this model. 
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5   Example Algorithm 

Without detracting from the general case for introspection, or from the generality 
of the model of “multi-threaded sequences”, here is an example of an algorithm to 
learn to play games. Below I will discuss how it differs from existing approaches 
(Freed 2011). 

Broadly, a robot is situated in a game, with inputs relating to the state of affairs 
and the score.  After acting pretty much at random, a certain amount of expe-
rience, encoded in a length of memory, is accumulated. The algorithm maintains a 
set of “Lines of thought” - essentially episodes from the past that are “borne in 
mind” - considered as alternative “Lines” of action. When inputs enter the system, 
the relevance-score of the Lines is updated. “Relevance” can be seen as an accu-
mulation of similarity over time (in the past) – the longer a certain episode (or 
“Line”) is reckoned to be similar to the current unfolding events, the more relevant 
it becomes. When an output is to be generated, the Lines in the table are sorted 
based on their respective “prediction” of the value of the outcome (derived from 
score-events in the “future” part of each sequence). The output is used thus: the 
best Line is re-outputted in 1/2 of the cases, the second in 1/4, the third in 1/8 and 
the fourth in 1/16 of the cases. In the remaining 1/16 of the cases a random action 
is selected. 

Note that “Lines” do not have predetermined beginnings or ends – when a situ-
ation (in present) is similar enough to a situation in the past  (and there is room in 
the table) – that moment in the past becomes “the beginning” of a Line in the ta-
ble. Lines “end” by becoming less relevant, crossing a certain threshold, and being 
dropped from the table. The Lines are used as rough predictors of the future, based 
on that particular episode in history. 

To reiterate the algorithm more formally: 

1. All “personal history” of a particular run is saved – this includes input, output, 
and score events. 

2. The algorithm maintains a Table of several Lines (think of these as “Lines of 
thought” - these are the “threads”), each Line referring to a moment in the His-
tory, which corresponds to the current time in the historical sequence. These 
pointers move forward in time in sync with the present time. A typical run 
would have 30 Lines.  

3. Each Line contains a (continuously updated) score as to how relevant (similar 
to current events) that Line is. 

4. The least relevant Lines are discarded, and newly relevant Lines are added, as 
current events unfold and relevance-scores are updated. 

5. Actions are selected (stochastically) from the various Lines based on the desir-
ability of the consequences predicted by every Line - hopefully the forthcoming 
events will be at least as successful as the historical episode (from the Line se-
lected). For example, there is a 1-in-2 chance of selecting the most successful 
Line, failing that again 1-in-2 for the second Line, the same for the third and 
fourth. If a Line is selected, the action taken in that past situation is replicated. 

6. If none of these four Lines are selected a random action is taken - this enables 
experimentation, learning and improvement. 
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There are many possible variants of this algorithm, and many parameters like the 
size of the table, various thresholds etc. that would affect its behaviour. 

6   Comparisons to Existing Techniques 

Again, without detracting from the general case for introspection-inspired algo-
rithms, the similarity and differences of this particular idea vis-à-vis existing tech-
nology are as follows: 

6.1   Reinforcement Learning (RL) 

If we assume that a situation is reducible to a finite amount of states (a Markov 
model), then it is known (Sutton & Barto 1998) that using RL it is possible to pro-
duce an optimal pattern of action based on the data collected, and hence would 
perform better (or equal) to any other algorithm. 

The main differences between the proposed algorithm and RL would be: First, 
the above algorithm does not necessarily reduce its world to an integer and (small) 
finite number of states, as RL presupposes (and Dreyfus 1979 objects). Second, 
the proposed algorithm’s tendency to continue along lines that have accumulated 
“relevance”, leads to a certain inertia, that is absent in RL. This would (from an 
optimality point-of-view) count against this proposal in favor of RL – but from the 
point-of-view of similarity between man and machine this tendency is an  
advantage. 

6.2   Case Based Reasoning (CBR) 

In CBR, the algorithm searches for the best match between the case at hand and a 
library of cases, and executes the best solution it can find (possibly with some ad-
aptations). In some implementations the solution is executed to completion with-
out a re-evaluation of the situation, while in other implementations CBR is used to 
re-solve a problem with every new input. In both cases, this is a deterministic al-
gorithm that always follows the best known solution. Every new situation is 
evaluated on its own merits. 

In the proposed algorithm the choice of action is influenced by the previous 
context. The algorithm could be said to be in a “mind-set” in that the lines of 
thought are not replaced instantly from one iteration to the next, but reduce or in-
crease in relevance over time. Also, the action is not selected necessarily from the 
best possible scenario (sequence or Line) but may be selected from the second, the 
third (etc.) Line, or even at random. This behaviour more closely replicates hu-
mans' shakeable but nonetheless rather adamant commitment to their existing 
course of action. It also allows for novelty and experimentation. For the outside 
observer, this would seem both more intent (from the commitment to the existing 
mind-set) and more experimenting (from the random element). 
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7   Summary 

This paper demonstrates that introspection is a legitimate and interesting source of 
inspiration for AI and hints at the need to review why and how useful approaches 
have been discarded as “unscientific”.  

Algorithms based on introspection will, by design, operate in a more “Human-
like” manner than, for example “Deep Blue”, CBR, RL, or other mathematically 
sound systems. There is no reason to believe they would be faster, or more effi-
cient in any mathematical measure than existing algorithms; the benefit lies else-
where: Robots acting in a human-like manner would make it easier for humans to 
understand the robots’ actions. Having a similar underlying architecture would al-
so hopefully allow in the future the converse - machines understanding humans 
better. 

One can also hope that in altering our approach so fundamentally we may be 
able to make tractable problem spaces that up until this point were difficult if not 
impossible to make progress in.  

By integrating philosophical arguments with specific proposed algorithms in 
the same paper it is hoped that the value of an interdisciplinary approach has be-
come transparent. 
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“Computational Ontology and Deontology”  

Raffaela Giovagnoli* 

Abstract. I’ll discuss an interesting argument from the recent book of John Searle 
Making the Social World (Oxford 2010) that tries to consider the construction of a 
society as an “engineering” problem and concludes that deontology works against 
the “computational” or “algorithmic” view of consciousness. I’ll introduce the 
notion of “consciousness” and the sense in which Searle uses the term (1); I’ll 
sketch Searle’s argument against the computational model (2) and I’ll criticize 
Searle’s reasons to warrant his criticism and I try to introduce a “compatibilist” 
view of human and artificial minds (3). 

 
Keywords: Ontology, deontology, consciousness, computationalism, free will, 
autonomy.  

1   Consciousness 

“Consciousness” is one of the main philosophical problems and requires a fruitful 
connection with science (namely it can be investigated in an interdisciplinary 
way). In Contra Gentium Aquinas showed that consciousness, means simple 
awareness. Consciousness entails the application of knowledge to something: 
conscire means almost simulscire.  Consciousness does not indicate a habit or a 
special potentiality rather the very act that applies a habit or notion to a particular 
act. It is so directed to establish, first, whether an act existed or not and, second, 
whether it was just or unjust. It requires the application of objective knowledge 
(science) so that consciousness loses its primacy to have access to reality. Our 
mind knows itself because it knows its very existence namely it perceives its very 
activity. 

It is not a matter of the classical “philosophy of consciousness” which rests on 
the individual self-reflection to discover testimony of an original structure of 
reality (Plotin, Christianity, Descartes, Hume, Husserl). In this sense, Hartmann 
and Heidegger presented an objective alternative of intentionality to underscore 
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that consciousness does not possess things but representations, images and 
conceptions that can be true only if it transcends itself toward an object which 
exists out of itself.  Ryle favored a sort of self-knowledge that is not privileged, 
direct and truthful; rather it is knowledge we can have of whatever thing. 
Moreover, language becomes a privileged medium to discover self-knowledge. 
Along this line, the perspective of Dewey is very interesting and promising 
because it presents a functional notion of consciousness as a source of ideas and 
directions that deserve to rectify and modify an actual situation in a social context.    

The contemporary debate shows that there is not a univocal meaning of the 
term “consciousness”. It can be used in different ways: 

 

- To refer to our awareness of certain events or processes 
- To refer of our awareness of our self (self-consciousness) 
- To refer to distinguish between waking and sleeping states 
- To grasp the religious sense of the soul 
- To refer to psychoanalytic distinction between conscious and unconscious 

dimensions 
- To grasp the subjective qualities (qualia) of experience 
-  To refer to the capacities for developing representational states with 

intentional content. 

Searle intends consciousness in this latter sense that entails the “representation” of 
intentional states such as beliefs and desires. According to Searle: “Consciousness 
consists of inner, qualitative, subjective states and processes of sentience or 
awareness. Consciousness, so defined, begins when we wake in the morning from 
a dreamless sleep and continues until we fall asleep again, die, go into a coma or 
otherwise become ‘unconscious’. It includes all of the enormous variety of the 
awareness that we think of as characteristic of our waking life” [1, p. 559]. 

Searle says that consciousness possesses an “essential” feature namely the 
combination of “qualitativeness”, “subjectivity” and “unity”. Qualitativeness 
indicates that for every conscious experience there is something that it feels like, 
or something that it is like, to have that conscious experience. Subjectivity means 
that conscious states exist only when they are experienced by some human or 
animal subject, namely they are essentially subjective. We notice that 
qualitativeness implies subjectivity because to have a qualitative feel to some 
event there must be some subject that experiences the event. Consequently, there 
is the “first person ontology” as opposed to the “third person ontology” of 
mountains and molecules, which can exist even though no living creatures exist. 
Lastly, all conscious experiences come as part of one unified conscious field. 
Unity is already implicit in subjectivity and qualitativeness; they give the state a 
particular form of unity. Unity is the main topic of some important contemporary 
studies such as the study of the split-brain patients (Gazzaniga) and the binding 
problem (Llinas, Pare, Singer, Gray and Crick). 

There are other important features that characterize consciousness. The most 
relevant for our discussion is “intentionality” [2] that represents the way in which 
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conscious states are directed towards objects and state of affairs in the world. We 
notice that conscious states have a “referential content”: beliefs, hopes, intentions, 
fears, desires and perceptions are all intentional. Other features which plays a role 
in Searle’s account are: the distinction between the center and the periphery of 
attention, the mood of human conscious experience, the pleasure/unpleasure 
dimensions, the Gestalt structure and familiarity [3].   

2   Searle against Computationalism 

Notoriously, Searle underscores these characteristics of consciousness to criticize 
behavioristic and computational perspectives. The famous “Chinese room” 
thought experiment [4] aimed at showing that computation is defined syntactically 
as symbol manipulation and this model does not work for consciousness because it 
is not sufficient to grasp the sort of semantic content of mental states (conscious or 
unconscious) namely, the “first person ontology’. Moreover, the very syntax is 
observer-relative namely it does not posses any intrinsic physical property. 
Consequently, Searle clarifies another point relevant for our discussion: “So the 
question ‘Is consciousness a computer program?’ lacks a clear sense. If it asks, 
‘Can you assign a computational interpretation to those brain processes which are 
characteristic of consciousness?’ the answer is: you can assign a computational 
interpretation to anything. But if the question asks ‘Is consciousness intrinsically 
computational?’ The answer is: nothing is intrinsically computational. 
Computation exists only relative to some agent or observer who imposes a 
computational interpretation to some phenomenon. This is an obvious point. I 
should have seen it ten years ago but I did not” [5, p.17].   

The limits of the computational interpretation are further explained in Making 
the Social World: consciousness becomes the fundamental condition to “reflect” 
on original mental states, namely to form “higher level of representations”. 
Deontology is another fundamental aspect of human conscious life, which 
represents the bridge between individual and social dimensions. Deontology 
requires that the “artificial” system must be able to create desire-independent or 
inclination-independent reasons for acting: “unless conscious agents recognize, for 
example, a reason for paying their restaurant bills, for not stealing the items in the 
museum, and for speaking the truth, restaurants, museums and statements will be 
out of business” [6, p. 140].  

Deontology is an aspect of human creativity through the performance of speech 
acts [7, chap. 4]. For example, the man who says “This is my property” or the 
woman who says “This is my husband”, may be creating a state of affairs by 
Declaration. A person, who can get other people to accept this Declaration, will 
succeed in creating an institutional reality that did not exist prior to Declaration. 
We have two cases: first, by Declaration a certain person or object X counts as Y 
(status entity with a precise function) in C (context); second, We (or I) make it the 
case by Declaration that a certain status function Y (such as corporations or 
electronic money) exists in C (context).  
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The deontic aspect of the use of language would distinguish therefore humans 
from robots. Searle’s criticism to computationalism starts from two imagined 
cases: the “society of robots” and the “society for robots” [8, pp. 133-39].  

In the “society of robots”, we could imagine a social community of robots, i.e. 
a set of “conscious” robots to which we give programs that will respond to 
stimulus inputs with the appropriate motor outputs. We could improve the systems 
by giving them language, namely a set of symbolic mechanisms for representing 
time and space so that they can communicate (volitions and beliefs) about times 
and places in different situations. It could be possible to give them mechanisms to 
perform various speech acts such as statements, orders, commands etc.  

Now a problem arises: in what sense could we say that robots are making 
statements, giving orders, or making and keeping promises? Let’s suppose that 
robot A is programmed to make a promise as soon as it cognizes a future need on 
the part of robot B; namely A is in a certain program state that matches certain 
future states of B. The “matching” relation means that A sends a signal to B, 
which is systematically related to A’s subsequent behavior. This kind of society 
lacks those voluntary actions typical of humans who undertake commitments 
entailed by speech acts.  

In the “society for robots”, we could imagine a different institutional reality, 
namely one that does not allow us the types of free choices we currently have but 
is mechanical and algorithmic. The system will not work because people have no 
independent motivation for following the rules.  

3   A “Compatibilist” View  

My criticism aims at weakening Searle’s position. As regards the “society of 
robots”, it is agreeable that promise-making presupposes on the part of the 
promisor that (a) the promise is not a mechanical (unconscious) emission of words 
and (b) the keeping of the promise is not a mechanical (unconscious) operation. 
But the way in which Searle describes the speech act of promise presents 
ambivalence. On the one side, the description of promise-making aims at 
excluding imperfection in speaking the language or physical impediments to 
communication such as “deafness” and also parasitic forms of communication 
such as “telling jokes” or “acting in a play” [9]. On the other side, the “society of 
robots” introduces an important requirement for promising, namely “free will” or 
a “sense of the gap” Searle describes as a sort of second-order system of volitions 
that gives rise to deontology or desire-independent reasons for action. What is the 
nature of the sense of the gap?  

In Searle’s terms: “(…) in addition to having beliefs and inclinations, it (the 
robot) must have a set of ways of appraising its beliefs and inclinations in light of 
its creation of commitments” [10, p. 136]. 

The sense of the gap gives humans the “experience of freedom” but the fact 
that we have it does not guarantee that we actually have free will. But: “ It still 
remains an open question whether or not the experiences are illusory” [11, p. 4]. 

As regards the “society for robots”, we are invited to imagine a society that 
does not create motivations for acting; it is a society for people who mechanically 
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follow social rules. This kind of functioning is clearly incompatible with humans 
who are supposed to make conscious choices and to have the sense of the gap. 
Humans tend to break the rules: they need a deontology that “is not part of a 
computational ontology”. A kind of “positive freedom”, that on Searle’s account 
means the augmentation of our powers by the creation of new enabling systems, is 
not enough. The enabling “deontic” systems have to coordinate with our abilities 
to act on reasons and many of the reasons in institutional reality are desire-
independent. A deontic system needs agents who possess free will in order to 
survive because rules are not “self-enforcing”.  

We can find ambivalence also in this case. It is plausible to recognize that 
social practices have a normative dimension i.e. adequate rules and norms that we 
can change by the active participation in the creation of institutional reality. But, 
humans often simply follow them in a mechanical way. This thesis is reinforced 
by several arguments from contemporary theories of autonomy; in particular, the 
“substantive” ones criticize “procedural” theories such as the theory of Searle by 
focusing on the fundamental role of socialization for the development of personal 
autonomy [12, chap. 3]. Moreover, substantive theories of autonomy (Wolf, 
Stolyar, Meyer, Friedman, Oshana, Benson) advance insightful criticisms to the 
primacy of the process of identification (authenticity) based on the approval 
(rational or not rational) of motivations for acting. Generally speaking, the 
internalization of social norms is compatible with autonomy; it provides the agent 
a sort of “platform” from which she can express her point of view.  

How can we try to philosophically sketch a “compatibilist view” as regards 
autonomy for human and artificial consciousness? I think that we can recall 
Searle’s idea according to which we can give also a computational interpretation 
of consciousness even if consciousness would not be intrinsically computational. 

Let me briefly refer to some ideas from the so-called “analytic pragmatism” 
[13]. I think that it represents a view that clarifies what abilities can be 
computationally implemented and what are typical of human reasoning. 
Moreover, it seems to make compatible deontology and computationalism. The 
intentionality of conscious mental states is described here according to a set of 
deontic states (commitments and entitlements) and deontic attitudes (recognition 
and attribution of deontic statuses). From a pragmatic point of view, we can also 
isolate a “wide” notion of autonomy that is bound to the use of vocabularies, 
which characterize an “autonomous discursive practice” (to use Brandom’s term). 
We advance the hypothesis that there is an essential relationship between 
autonomy and the participation to certain rule governed practices.  

The wide notion of autonomy emerges from [14, p. 39]: 

- basic practices that are “sufficient” to “deploy” a vocabulary 
- a vocabulary that “specify” the set of practices-or-abilities 
- the sufficiency of a set of practices –or –abilities that can be elaborated 

into another, by a set of algorithmic abilities that implement that practical 
elaboration 

- the sufficiency of one vocabulary to “characterize” another (the relation 
of being a direct or immediate semantic or syntactic metavocabulary). 
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In Brandom’s terms: “Transducing automata are more than merely syntactic 
elaborating engines because the stimuli they can respond to and the responses they 
can produce are not limited to symbol-types (or sign-types). Depending on the 
‘alphabet’ of stimulus- and response-kinds they elaborate, however, they can also 
manipulate symbols. But they also allow us to think about symbols in a new way: 
still not representationally, not yet semantically, but not just syntactically either. 
For we can think of symbols generically as anything that can both be read and 
written, that is, recognized and produced. In this broad sense, appropriate to 
transducing automata, anything in the intersection S ∩ R of S and R can be used 
as a symbol: any stimulus-kind, instances of which the system can produce as 
responses” [15, p.39].  

The description of the practices-sufficiency gives rise to a “mechanical” 
process like a sort of “rule following” that could also characterize, for example, 
rituals that possess a certain vocabulary. In this case we have three vocabularies: 
V1 emerges from basic practices (performance of rituals), V2 characterizes V1 i.e. 
is a syntactic or semantic metavocabulary (describes what we are doing in the 
performance of certain rituals) and V3 specifies what the system is doing 
according to certain rules (specifies the rules that govern the performance of 
rituals). Obviously, the result is that what we can elaborate is a procedure that 
does not grasp the “content” of individual mental states namely there exist aspects 
of them that are not captured by the mechanical process (the first person 
ontology).  

The practices that can be artificially elaborated are sufficient i.e. “PP-
sufficient” to deploy a particular vocabulary (in our case the vocabulary that 
characterizes a certain ritual). But we can ask: are there any practical abilities that 
are universally “PV-necessary”?   

In Brandom’s words: “inferential practices are PP-necessary components of 
every autonomous discursive practice, hence PV-necessary for the deployment of 
every autonomous vocabulary, hence PV-necessary for the deployment of every 
vocabulary whatsoever. They are universally PV-necessary” [16, p. 41]. 

Inferential practices are typical of the practice of “asserting’ that is different 
from other kinds of broad “linguistic practices”. In this sense, Brandom wants to 
overcome the Wittgensteinean conception of “linguistic game” according to which 
the concept of game does not have an essence or a definition but it is structured by 
family resemblances [17, pp. 39-44]. Moreover, according to the Brandomian 
criterion of demarcation of the discursive many of Wittgenstein’s Sprachspiele are 
not really Sprachspiele. To recall a famous passage from § 2 of the Philosophical 
Investigations: “(…) a language consisting of the words ‘block’, ‘pillar’, ‘slab’, 
‘beam’, A calls them out; B brings the stone which he has learnt to bring at such-
and-such a call. Conceive this a complete primitive language”.   

Brandom underscores that the “calls” “are signals appropriately responded to, 
according to the practice namely in one way rather than another. But, they are not 
orders for they specify how it is appropriately responded to by saying what one 
must do in order to comply. ‘Shut the door!’ can be a saying of the imperative 
kind only as part of a larger practice in which ‘The door is shut’ can be a saying of 
the declarative kind” [18, p. 42]. 



“Computational Ontology and Deontology”  185
 

Assertional practices are typical of human beings and they are structured by 
material inferences, namely by the commitments and the entitlements implied by 
concepts and made explicit by conditionals [19, chap. 3]. This thesis implies that 
inferential practices are necessary to deploy every vocabulary we use in our 
ordinary life. In this case we ought to concentrate on conditionals governed by 
material inference such as “If Vic is a dog then Vic is a mammal” or “If this ball is 
red then it is not green”. The validity of a material inference is given by the 
correct use of concepts such as “dog” and “mammal” that is given by the 
commitments and the entitlements entailed by the concepts [20, chap. 6].   

A material inference is embedded also in a social norm like the inferential 
pattern “If I am a bank employee I ought to wear a necktie” (because “Bank 
employees are obliged [required] to wear neckties” is a social norm) and can be 
recognized and attributed as such [21, chap. 4]. Inferential practices represent 
conceptual abilities that, according to Brandom, can’t be artificially elaborated 
[22, chap. 3]. On the contrary, I think that Brandom’s argument allows 
interpretations, which demonstrate that also the inferential dimension of human 
reasoning can be computationally elaborated [23].  

Conclusion 

First, we sketched the notion of consciousness in the philosophical tradition and 
underscored the relevance and the features of the Searlean one. Second, we 
underscored how the characteristic “first person ontology” and the dimension of 
deontology, which are the results of the Searlean analysis, run against a 
computationalist view of consciousness. But, there is a second interpretation of AI 
that is not enough considered and that makes the classical Chinese Room 
experimental thought against the Turing test weaker. Third, we tried to present a 
compatibilist view of human and artificial mind by using some ideas from analytic 
pragmatism.  

The account presented by Brandom could overcome the Searlean account of 
deontology where deontology is not part of a computational ontology. We can 
notice that the inferential structure implicit in the use of concepts embedded in 
linguistic expressions encloses a fundamental deontic structure. If we intend 
autonomous agency as participation in linguistic and discursive practices than we 
can also account for a compatibilist view on autonomous agency which shows the 
practices and abilities that are common to human and artificial minds. 
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Emotional Control–Conditio Sine Qua Non
for Advanced Artificial Intelligences?

Claudius Gros

Abstract. Humans dispose of two intertwined information processing pathways,
cognitive information processing via neural firing patterns and diffusive volume
control via neuromodulation. The cognitive information processing in the brain is
traditionally considered to be the prime neural correlate of human intelligence, clin-
ical studies indicate that human emotions intrinsically correlate with the activation
of the neuromodulatory system.

We examine here the question: Why do humans dispose of the diffusive emo-
tional control system? Is this a coincidence, a caprice of nature, perhaps a leftover
of our genetic heritage, or a necessary aspect of any advanced intelligence, being it
biological or synthetic?

We argue here that emotional control is necessary to solve the motivational prob-
lem, viz the selection of short-term utility functions, in the context of an environ-
ment where information, computing power and time constitute scarce resources.

1 Introduction

The vast majority of research in artificial intelligences is devoted to the study of
algorithms, paradigms and philosophical implications of cognitive information pro-
cessing, like conscious reasoning and problem solving [1]. Rarely considered is the
motivational problem - a highly developed AI needs to set and select its own goals
and tasks autonomously.

We believe that it is necessary to consider the motivational problem in the context
of the observation that humans are infused with emotions, possibly to a greater
extend than any other species [2]. Emotions play a very central role in our lives, in
literature and human culture in general. Is this predominance of emotional states a
coincidence, a caprice of nature, perhaps a leftover from times when we were still
‘primitives and brutes’, or perhaps a necessary aspect of any advanced intelligence?
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The motivational problem is about the fundamental conundrum that all living in-
telligences face. From the myriads of options and behavioral strategies it needs to
select a single route of action at any given time. These decisions are to be taken
considering three limited resources, the information disposed of about the present
and the future state of the world, the time available to take the decision and the com-
putational power of its supporting hard- or wetware. Here we argue that emotional
control is deeply entwined with both short- and long-term decision making and al-
lows to compute in real time approximate solutions to the motivational problem.

When considering the relation between emotional control and the motivational
problem one needs to discuss the nature of non-biological intelligences for which
this issue is of relevance. We believe that, in the long term, there will be two major
developmental tracks in AI research - focused artificial intelligences and organis-
mic universal synthetic intelligences. We believe that the emotional control consti-
tutes an inner core functionality for any universal intelligence and not a secondary
addendum.

2 Intelligent Intelligences

We start with some terminology and a loose categorization of possible forms of
intelligence.

Focused Artificial Intelligences. We will use the term focused AI for what consti-
tutes today’s mainstream research focus in artificial intelligence and robotics. These
are highly successful and highly specialized algorithmic problem solvers like the
chess playing program Deep Blue [8], the DARPA-like autonomous car driving sys-
tems [9] and Jeopardy software champion Watson [10].

Focused artificial intelligences are presently the only type of artificial intelli-
gences suitable for commercial and real-world applications. In the vast majority
of today’s application scenarios a focused intelligence is exactly what is needed, a
reliable and highly efficient solution solver or robotic controller.

Focused AIs may be able to adapt to changing demands and have some forms of
built-in, application specific learning capabilities. They are however characterized
by two features.

• Domain specificity. A chess playing software is not able to steer a car. It is much
more efficient to develop two domain specific softwares, one for chess and one
for driving, than to develop a common platform.

• Maximal a priori information. The performance real-world applications are gen-
eraly greatly boosted when incorporating a maximal amount of a priori infor-
mation into the architecture. Deep Blue contains the compressed knowledge of
hundreds of years of human chess playing, the DARPA racing car software the
Newton laws of motion and friction, the algorithms do not need to discover and
acquire this knowledge from proper experiences.

Focused AI sees a very rapid development, increasingly driven by commercial ap-
plications. They will become extremely powerful within the next decades and it is
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questionable whether alternative forms of intelligences, whenever the may be avail-
able in the future, will ever be able to compete with focused AI on economical
grounds. It may very well be, though difficult to foretell, that focused AI will al-
ways yield a greater return on investment than more general types of intelligences
with their motivational issues.

Synthetic Intelligences. The term ‘artificial intelligence’ has been used and abused
in myriads of ways over the past decades. It is standardly in use for mainstream AI
research, or focused AI as described above. We will use here the term synthetic
intelligence for alternative forms of intelligences, distinct from todays mainstream
route of AI and robotics research.

Universal Intelligences. It is quite generally accepted that the human brain is an
exemplification of ‘universal’ or ‘generic’ intelligence. The same wetware and neu-
ral circuitry can be used in many settings - there are no new brain protuberances
being formed when a child learns walking, speaking, operating his fairy-tale player
or the alphabet at elementary school. There are parts of the brain more devoted to vi-
sual, auditory or linguistic processing, but rewiring of the distinct incoming sensory
data streams will lead to reorganization processes of the respective cortical neural
circuitry allowing it to adapt to new tasks and domains.

The human brain is extremely adaptive, a skilled car driver will experience, to a
certain extend, its car as an extension of his own body. A new brain-computer inter-
ference, when available in the future, will be integrated and treated as a new sensory
organ, on equal footing with the biological pre-existing senses. Human intelligence
is to a large extend not domain specific, its defining trait is universality.

Organismic Intelligences. An ‘organismic intelligence’ is a real-world or simu-
lated robotic system which has the task to survive. It is denoted organismic since
the survival task is generically formulated as the task to keep the support unit, the
body, functional [3, 4].

Humans are examples of organismic intelligences. An organismic synthetic in-
telligence may be universal, but not necessarily. The term ‘organismic’ is not to be
confused with ‘embodiment’. Embodied AI deals with the question whether consid-
ering the physical functionalities of robots and bodies is helpful, of even essential,
for the understanding of cognitive information processing and intelligence in gen-
eral [5, 6, 7].

Cognitive System. The term ‘cognitive system’ is used in various ways in the lit-
erature, mostly as a synonym for a cognitive architecture, viz for an information
processing domain-specific software. I like to reserve the term cognitive system
for an intelligence which is both universal and organismic, may it be biological or
synthetic.

Humans are biological cognitive systems in this sense and most people would
expect, one can however not foretell with certainty, that ‘true’ or ‘human level AI’
would eventually be realized as synthetic cognitive systems. It is an open and unre-
solved questions, as a matter of principle, whether forms of human level AI which
are not cognitive systems in above sense, are possible at all.
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Fig. 1 Illustration of the
(hypothetical) complexity
conundrum, which regards
the speculation that the men-
tal capabilities of biological
or synthetic intelligences
(right) might be system-
atically too low to fully
understand the complexity
of their own supporting cog-
nitive architectures (left).
In this case the singularity
scenario would be void.
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Human Level Artificial Intelligences. An ultimate goal of research in artificial
and synthetic intelligences is to come up with organizational principles for intel-
ligences of human or higher level. How and when this goal will be achieved is
presently in the air, a few aspects will be discussed in the next section. This has not
precluded an abundance of proposals on how to test for human-level intelligences,
like the Turing test [11] or the capability to perform scientific research. Some people
believe that human intelligence will have been achieved when we do not notice it.

The Complexity Conundrum. Regarding the issue when and how humanity will
develop human level intelligences we discuss here shortly the possible occurance of
a ‘complexity paradox’, for which we will use the term complexity conundrum.

Every intelligence arises form a highly organized soft- or wetware. One may as-
sume, though this is presently nothing more than a working hypothesis, that more
and more complex brains and software architectures are needed for higher and
higher intelligences. The question is than, whether a brain with a certain degree
of complexity will give raise to a level on intelligence capable to understand its own
wetware, compare Fig. 1. It may be, as a matter of principle, that the level of com-
plexity a certain level of intelligence is a able to handle is always below the level of
complexity of its own supporting architecture.

This is really a handwaving and rather philosophical question with many open
ends. Nevertheless one may speculate whether the apparent difficulties of present-
day neuroscience research to carve out the overall working principles of the brain
may be in part due to a complexity conundrum. Equivalently, considering the suc-
cesses and the failures of over half a century of AI research, our present near-to
complete ignorance of the overall architectural principles necessary for the develop-
ment of eventual human level AI may be routed similarly in either a soft or a strong
version of the complexity conundrum.

The complexity conundrum would however not, even if true, preclude humanity
to develop human level artificial or synthetic intelligences in the end. As a last re-
sort one may proceed by trial and error, viz using evolutionary algorithms, or via
brute force reverse engineering, if feasible. The notion of a complexity conundrum
is relevant also to the popular concept of a singularity, a postulated runaway self
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Fig. 2 Mainstream architecture for a hypothetical human-level artificial intelligence. The
motivational problem would be delegated to a secondary level responsible of selecting ap-
propriate modules for problems and tasks which are not autonomously generated but pre-
sumably presented to the AI by human supervisors. Higher cognitive states like conscious-
ness are sometimes postulated to emerge spontaneously with raising complexity from self-
organizational principles, emotional control is generically regarded as a later-stage add-on, if
at all.

improving circle of advanced intelligences [12, 13]. The complexity conundrum,
if existing in any form, would render the notion of a singularity void, as it would
presumably apply to intelligences at all levels.

3 Routes to Intelligence

There are presently no roadmaps, either individually proposed or generally ac-
cepted, for research and development plans leading to the ultimate goal of highly
advanced intelligences. Nevertheless there are two main, conceptually distinct,
approaches.

3.1 From Focused to General Intelligence?

The vast majority of present-day research efforts is devoted to the development of
high-performing focused intelligences. It is to be expected that we will see advances,
within the next decades, along this roadmap for hundreds and many more applica-
tion domains.

There is no generally accepted blueprint on how to go beyond focused intelli-
gences, a possible scenario is presented in Fig. 2. A logical next step would be to
hook up a vast bank of specialized algorithms, the focused intelligences, adding a
second layer responsible for switching between them. This second layer would then
select the algorithm most appropriate for the problem at hand and could contain
suitable learning capabilities.

This kind of selection layer constitutes a placebo for the motivational problem,
the architecture presented in Fig. 2 would not be able to autonomously generate its
own goals. This is however not a drawback for industrial and for the vast majority
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Fig. 3 Architecture for biologically inspired universal synthetic intelligences, viz of cogni-
tive systems. The basis would be given by a relatively small number of genetically encode
universal operating principles, with emotional control being central for the further devel-
opment through self-organized learning processes. How consciousness would arise in this
setting is not known presently, it is however regarded as a prerequisite for higher intellectual
capabilities such as abstract reasoning and knowledge specialization.

of real-world applications, for which the artificial intelligence is expected just to
efficiently solve problems and tasks presented to it by human users and supervisors.

In a third step it is sometimes expected that cognitive architectures may develop
spontaneously consciousness with raising levels of complexity. This speculation,
particularly popular with science-fiction media, is presently void of any supporting
or contrarian scientific basis [14, 15]. Interesting is the tendency of mainstream AI
to discuss emotions as secondary features, mostly useful to facilitate human-robot
interactions [16]. Emotions are generically not attributed a central role in cognitive
architectures withing mainstream AI.

One could imagine that the kind of cognitive architecture presented in Fig. 2 ap-
proaches, with the expansion of its basis of focused intelligences, step by step the
goal of a universal intelligence able to handle nearly any conceivable situation. It
is unclear however which will be the pace of progress towards this goal. It may be
that progress will be initially very fast, slowing then however down substantially
when artificial intelligence with elevated levels of intellectual capabilities have been
successfully developed. This kind of incremental slowing-down is not uncommon
for the pace of scientific progress in general. Life expectancy has been growing lin-
early, to give an example, over the last two centuries. The growth in life expectancy
is extremely steady and still linear nowadays, despite very rapidly growing med-
ical research efforts. Not only in economics, but also in science there are generic
decreasing returns on growing investments. Similarly, vast increases in the number
and in the power of the underlying array of focused intelligences may, in the end,
lead to only marginal advances towards universality.
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3.2 Universal Learning Systems

The only real-world existing example of an advanced cognitive system is the mam-
malian brain. It is hence reasonable to consider biologically inspired cognitive ar-
chitectures. Instead of reverse engineering the human brain, one tries then to deeply
understand the general working principles of the human brain.

There are good arguments that self-organization and general working principles
are indeed dominant driving forces both for the development of the brain and for
its ongoing functionality [17, 18]. Due to the small number of genes in the human
genome, with every gene encoding only a single protein, direct genetic encoding
of specific neural algorithms has either to be absent all together in the brain or be
limited to only a very small number of vitally important features.

It is hence plausible that a finite number of working principles, possibly as small
as a few hundred, may be enough for a basic understanding of the human brain,
with higher levels of complexity arising through self-organization. Two examples
for general principles are ‘slowness’ [19] for view-invariant object recognition and
‘universal prediction tasks’ [3] for the autonomous generation of abstract concepts.

Universality, in the form of operating principles, lies therefore at the basis of
highly developed cognitive systems, compare Fig. 3. This is in stark contrast to
mainstream AI, where universality is regarded as the long-term goal, to be reached
when starting from advanced focused intelligences.

One of the genetically encoded control mechanisms at the basis of a cognitive
system is emotional control, which we will discuss in more detail in the next section.
Emotional control is vitally important for the functioning of a universal learning
system, and not a secondary feature which may be added at a later stage.

• Learning. In the brain two dominant learning mechanisms are known. Hebbian-
type synaptic plasticity which is both sub-conscious and automatic, and reward-
induced learning, with the rewards being generated endogenously through the
neuromodulatory control system, the later being closely associated with the ex-
perience of motions.

• Goal selection. Advanced cognitive systems are organismic and hence need to
constantly select their short- and long term goals autonomously, with emotional
weighing of action alternatives playing a central role.

It is not a coincidence, that the emotional control system is relevant for above two
functionalities, which are deeply inter-dependent. There can be no efficient goal
selection without learning from successes and failure, viz without reward induced
learning processes.

4 Emotional Control

Emotions are neurobiologically not yet precisely defined. There are however sub-
stantial indications from clinical studies that emotions are intrinsically related to
either the tonic or the phasic activation of the neuromodulatory system [22]. For
this reason we will denote the internal control circuit involving neuromodulation,



194 C. Gros

sensory data input stream

motor action output

autonomous

Fig. 4 Fast and slow variables have distinct functionalities in the brain, with the operating
modus (mood) being set by the slow variables and the actual cognitive processes, which
are either input induced or autonomous [20, 21], being performed by the fast variables. The
adaption of the slow variables (metalearning) is the task of the diffusive neuromodulatory
system (emotional control).

compare Fig. 4, emotional control. We will also use the expression diffusive emo-
tional control since neuromodulation acts as a diffusive volume effect.

One needs to differentiate between the functionality of emotions in the con-
text of cognitive system theory, discussed here, and the experience (the qualia)
of emotions. It is presently an open debate whether the body is necessary for
the experience of emotions and moods, which may be induced by the propri-
oceptual sensing of secondary bodily reactions [23]. The origin of emotional
experience is not subject of our deliberations.

4.1 Neuromodulation and Metalearning

Animals dispose of a range of operating modi, which one may identify with moods
or emotional states. A typical example of a set of two complementary states is ex-
ploitation vs. exploration: When exploitive the animal is focused, concentrated on a
given task and decisive. In the explorative state the animal is curious, easily dis-
tracted and prone to learn about new aspects of his environment. These moods
are induced by the tonic, respectively the phasic activation of the neuromodula-
tory system [24], the main agents being Dopamine, Serotonin, Norepinephrine and
Acetylcholine.

When using the language of dynamical system theory we can identify the task of
the neuromodulatory system with metalearning [25]. Any complex system disposes
of processes progressing on distinct time scales. There may be in principle a wide
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range of time scales, the simplest classification is to consider slow and fast processes
driven respectively by slow and fast variables.

Cognitive information processing is performed in the brain through neural fir-
ing and synaptic plasticity, corresponding to the fast variables in terms of dynam-
ical system theory [3]. The general operating modus of the neural circuitry, like
the susceptibility to stimuli, the value of neural thresholds or the pace of synaptic
plasticities are slow degrees of freedom. The adaption of slow degrees of freedom to
changing tasks is the realm of metalearning, which in the brain is preformed through
the neuromodulatory system, compare Fig. 4.

Metalearning is a necessary component of any complex dynamical system and
hence also for any evolved synthetic or biological intelligence. It is therefore not sur-
prising that the human brain disposes of a suitable mechanism. Metalearning is also
intrinsically diffusive, as it involves the modulation not of individual slow variables,
metalearning is about the modulation of the operating modus of entire dynamical
subsystems. It is hence logical that the metalearning circuitry of the brain involves
neuromodulatory neurons which disperse their respective neuromodulators, when
activated, over large cortical or subcortical areas, modulating the behavior of down-
stream neural populations in large volumes.

An interesting and important question regards the guiding principles for meta-
learning. An animal has at its disposal a range of distinct behaviors and moods,
foraging, social interaction, repose, exploration, and so on. Any cognitive system
is hence faced with a fundamental time allocation problem, what to do over the
course of the day. The strategy will in general not be to maximize time allocation
of one type of behavior, say foraging, at the expense of all others, but to seek an
equilibrated distribution of behaviors. This guiding principle of metalearning has
been denoted ‘polyhomeostatic optimization’ [26].

4.2 Emotions and the Motivational Problem

It is presently unclear what distinguishes metalearning processes which are expe-
rienced as emotional from those which are unconscious and may hence be termed
‘neutral’. It has been proposed that the difference may be that emotional control
has a preferred level of activation, neutral control not [27, 28]. When angry one
generally tries behavioral strategies aimed at reducing the level of angriness and
internal rewards are generated when successful. In this view emotional control is in-
trinsically related to behavior and learning, in agreement with neuro-psychological
observations [24, 2, 29].

Emotional states induce, quite generically, problem solving strategies. The cog-
nitive system either tries to stay in its present mood, in case it is associated with
positive internal rewards, or looks for ways to remove the causes for its current
emotional state, in case it is associated with negative internal rewards. Emotional
control hence represents a way, realized in real-world intelligences, to solve the mo-
tivational problem, determining the utility function the intelligence tries to optimize
at any given point of time.
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A much discussed alternative to emotional control is straightforward maximiza-
tion of an overall utility function [30]. This paradigm is highly successful when
applied to limited and specialized tasks, like playing chess, and is as such important
for any advanced intelligence. Indeed we argue that emotional control determines
the steady-state utility function. As an example consider playing chess. Your util-
ity function may either consist in trying to beat the opponent chess player or to be
defeated by your opponent (in a non-so-evident way) when playing together with
your son or daughter. These kinds of utility functions are shaped in real life by our
emotional control mechanisms.

It remains however doubtful whether it would be possible to formulate an overall,
viz a long-term utility function for a universal intelligence and to compute in real
time its gradients. Even advanced hyper-intelligences will dispose of only an expo-
nentially small knowledge about the present and the future state of the world, pre-
diction tasks and information acquisition is generically NP-hard (non-polynomial)
[31, 32, 33]. Time and computing power (however large it may be) will forever
remain, relatively seen, scarce resources. It is hence likely that advanced artificial
intelligences will be endowed with ‘true’ synthetic emotions, the perspective of a
hyper-intelligent robot waiting emotionless in its corner, until its human boss calls
him to duty, seems implausible [34, 35, 36, 37].

Any advanced intelligence needs to be a twofold universal learning system. The
intelligent system needs to be on one side able to acquire any kind of information
in a wide range of possible environments and on the other side to determine au-
tonomously what to learn, viz solve the time allocation problem. The fact that both
facets of learning are regulated through diffusive emotional control in existing ad-
vanced intelligences suggests that emotional control may be a conditio sine qua non
for any, real-world or synthetic, universal intelligence.

5 Hyper-Emotional Trans-Human Intelligences?

Looking around at the species on our planet one may surmise that increasing cog-
nitive capabilities go hand in hand with rising complexity and predominance of
emotional states [2]. The rational is very straightforward. An animal with say only
two behavioral patterns at its disposition, e.g. sleeping and foraging, does not need
dozens of moods and emotions, in contrast to animals with a vast repertoire of po-
tentially complex behaviors.

This observation is consistent with the theory developed here, that metalearning
as a diffusive emotional control system is a necessary component for any synthetic
and biological intelligence. It is also plausible that the complexity the metalearning
control needs to increase adequately with increasing cognitive capacities.

It is hence amusing to speculate, whether synthetic intelligences with higher
and higher cognitive capabilities may also become progressively emotional. Super-
human intelligences would then also be hyper-emotional. An outlook in stark
contrast to the mainstream view of hyper-rational robots, which presumes that
emotional states will be later-stage addendums to high performing artificial
intelligences.
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Becoming Digital: Reconciling Theories
of Digital Representation and Embodiment

Harry Halpin

1 Introduction

One of the defining characteristics of information in actually-existing computational
mechanisms ranging from the World Wide Web to word-processors is that they deal
in information that is - or at least seems to be - robustly digital, bits and bytes.
Yet shockingly, there is no clear notion of what ‘being’ digital consists of, even
though a working notion of digitality is necessary to understand computers, if not
human intelligence. This is not to say that ‘digitality’ is not understood in a prac-
tical or engineering sense, for assuredly we build digital systems. While engineers
can implement digitality, and ordinary people ‘know it when they see it,’ there is
no rigorous philosophical definition of digitality. So a whole host of questions are
left unanswered when human intuitions over digitality vary, which can easily hap-
pen outside of a practical engineering context. For example, are concepts digital?
Can non-human artifacts be digital? Is digitality subjective or objective? [22]. These
kinds of questions can not be answered rigorously because philosophy has in gen-
eral ignored inspecting the intuitions behind digitality, so our first task should be to
create a philosophical definition of digitality.

Furthermore, much of the power of computation comes not only from digital-
ity, but from the ability of computers to ‘represent’ things. Again, the situation is
similar to digitality: namely, that almost anyone can ‘spot’ a representation when
they see one, such as a picture of the Eiffel Tower or the words ‘Eiffel Tower.’
Unlike digitality, representations have been a core topic of philosophical investi-
gation in cognitive science [6]. However, over the last twenty years a movement
against digital representations has been gaining momentum in the field of artificial
intelligence (AI). This movement usually goes under the slogan of ‘embodiment,’
as many researchers wanted to move the focus of AI to more biologically realistic
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work around dynamical systems and neural networks [3]. While once a minority
within AI, at this point anti-representationalists are the clear majority. Their philo-
sophical lineage can primarily be traced to Hubert Dreyfus’s Heideggerian analysis
of intelligence, which rejects the role of representations in intelligence altogether
[9]. Another more subterranean anti-representationalist influence is the theory of
autopoiesis of Maturana and Varela [21]. These strands of anti-representationalist
philosophy have rejected the possibility of computationally-implemented artificial
intelligence on a priori metaphysical grounds. However, more empirically-inclined
philosophers such as Clark [3] and Wheeler [29] have revived the philosophy of
artificial intelligence with many of the insights of embodiment while still holding
out for artificial intelligence as an engineering possibility. Influenced by this philo-
sophical stance, most researchers have adopted an anti-representationalist stance in
their practical work towards building artificial intelligence, such as the well-known
work of Rodney Brooks in robotics [2]. Yet, surprisingly, very little of this work
has come to fruition: Brooks is well-known for having simulated animals, but his
project to simulate actual human-level intelligence seems to have stalled. Not to
mention that there is a movement to incorporate the environment into the task of
both philosophical and engineering investigations of intelligence, as exemplified
by the work around the Extended Mind Hypothesis by Clark and Chalmers [5].
However, these researchers have yet to come to grasps with the fact that this wider
environment would definitely include computers, the Web, and other rather intu-
itively information-carrying digital representations. Previously, almost all work in
the philosophy of AI has focused on debates over the possible existence of represen-
tations that are assumed to be implemented neurally. We can remain agnostic on this
question while at least accepting that representations do exist external to the neural
system. Thus, our second task should be to define a definition of representation that
is independent of whether a given representation is internal or external to the human
body as conventionally defined by the barrier of the skin. Lastly, our explanations
of representations and digitality must be purely causal so not incompatible with the
strict materialism that is necessary for a scientific understanding of embodied and
embedded intelligence.

2 Preliminaries

On the surface a term like ‘representation’ seems to be what Brian Cantwell Smith
calls “physically spooky,” since a representation can refer to something with which
it is not in physical contact [27]. This spookiness is a consequence of a violation
of common-sense physics, since representations allow us to have some sort of what
appears to be a non-physical relationship with things that are far away in time and
space. This relationship of ‘aboutness’ is often called reference or intentionality and
is considered to be the defining characteristic of representations. While it would be
premature to define ‘representation,’ a few examples will illustrate its usage: some-
one can think about the Eiffel Tower in Paris without being in Paris, or even having
ever set foot in France; a human can imagine what the Eiffel Tower would look like
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if it were painted blue, and one can even think of a situation where the Eiffel Tower
wasn’t called the Eiffel Tower. Furthermore, a human can dream about the Eiffel
Tower, make a plan to visit it, all while being distant from the Eiffel Tower. Inten-
tionality also works temporally as well as distally, for one can talk about someone
who is no longer living such as Gustave Eiffel. Despite appearances, intentionality
is not epiphenomenal, for intentionality has real effects on the behavior of agents.
Specifically, one can remember what one had for dinner yesterday, and this may
impact on what one wants for dinner today, and one can book a plane ticket to visit
the Eiffel Tower after making a plan to visit it.

Can we get to the heart of this mystery of representation without recourse to
some kind of dualism? The trick would be to define what precisely our common-
sense notion of representation is, and to do this requires some terminological ground
work while avoiding delving into amateur quantum physics. The terminology here
is supposed to reconstruct rather carefully some common-sense demarcations in an
uncontroversial yet broad manner. To pin the supposed ‘spookiness’ of reference
down, we will introduce a few terms. A process - or ‘thing’ - is a general-purpose
term used to denote events, objects, and proto-objects in a “patch of metaphysical
flux,” where a thing can be defined by having some regularity in time and space
that can distinguish it from other possible things [27]. A regularity is a lack of
difference in time and space at a given level of abstraction. There are generally
two kinds of separation possible in processes in a relativistically invariant theory,
a physical theory that obeys the rules of special relativity so that the theory looks
the same for any constant velocity observer, as processes may be separated in time
or space. Things that are separated by time and space are non-local (disconnected)
while those things that are not separated by time and space are local (connected).
While a discussion about counterfactuals and causation is far beyond our scope, we
will rely on the common-sense intuition that if one process is connected with another
thing and a change in the former thing is followed by a change in the latter thing,
that former process may have caused the change in the latter process. Anything that
appears to violate these common-sense intuitions about physics and causation is
spooky, while anything that does not is non-spooky. A property of the distal is that
it is beyond effective reach; as Smith puts it, “distance is where no action is at” [27].

3 Information, Encoding, and Content

In order to define digitality and representation, we will have to reformulate the no-
tion of information, building on Shannon’s information theory [25]. To rephrase
as best as we can the mathematics of Shannon in natural language, information
is whatever regularities held in common between two processes, a source and a re-
ceiver [25]. To have something in common means to share the same regularities, e.g.
parcels of time and space that cannot be distinguished at a given level of abstrac-
tion. This definition correlates with information being the inverse of the amount of
‘noise’ or randomness in a system, and the amount of information being equivalent
to a reduction in uncertainty. This preservation or failure to preserve information
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can be thought of the as sending of a message between the source and the receiver
over a channel. Whether or not the information is preserved over time or space is
due to the properties of a physical substrate known as the channel.

Shannon’s theory deals with finding the optimal encoding and size of channel so
that the message can be guaranteed to get from the sender to the receiver [25]. Yet,
what is encoding? Goodman defines what we would call an encoding as a series of
marks, where a mark is a physical characteristic, such as the marks on paper one can
use to discern alphabetic characters to ranges of voltage that can be thought of as
bits [12]. To be reliable in conveying information, an encoding should be physically
“differentiable” and thus maintain what Goodman calls “character indifference” so
that (at least within some context) each character (characteristic) can not be mis-
taken for another character. So, an encoding is a set of precise regularities that can
be realized by the message.

There is more to information than encoding. Shannon’s theory does not explain
the notion of information fully, since giving someone the number of bits that a
message contains does not tell the receiver what information is encoded. Shannon
himself explicitly states, “The fundamental problem of communication is that of re-
producing at one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are correlated
according to some system with certain physical or conceptual entities. These se-
mantic aspects of communication are irrelevant to the engineering problem” [25].
Many intuitions about the notion of information have to deal with not only how the
information is encoded or how to encode it, but what a particular message is about,
the content of an information-bearing message. ‘Content’ is a term we adopt from
Israel and Perry [19], as opposed to the more confusing term ‘semantic information’
as employed by Floridi [10]. Floridi rejects traditional Shannon information theory
in favor of constructing his own idiosyncratic theory of ‘semantic’ information, but
his rejection is based on a common misunderstanding of Shannon’s information
theory as merely a theory of communication between a source and a receiver. How-
ever, the receiver and sender can exist over time rather than space, and so be the
same physical object. For example, information (such as my eye color) is preserved
(and can even be thought of as a message!) between myself at five-years old and my-
self at thirty-three years old. Information is not about communication, but about the
preservation and determination of structure, which is necessary both for digitality
and representation to work. Not to mention that logic-based AI has essentially been
superseded by machine-learning in artificial intelligence, and machine-learning is
firmly defined in terms of Shannon information theory.

Structure is needed to convey content, but what is content? While the notion of
an informational content is hard to pin down, it is easy to illustrate. Let’s imagine
the case where we are trying to deliver the message that Ralph, a single employee
at a company that has eight employees, won a trip to Paris. Just determining that
Ralph won a free trip to Paris requires at least a three bit encoding and does not tell
us which person in particular won the lottery. Shannon’s theory only measures how
many bits are needed to tell us precisely who won. After all, the false message that
tells us wrongly won a trip to Paris is also three bits. Yet content is not independent
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of the encoding, for content is conveyed by virtue of a particular encoding and a par-
ticular encoding imposes constraints on what content can be sent [25]. Let’s imagine
that Daniel is using a code of bits specially designed for this problem, rather than
natural language, to tell us who won the free plane ticket to Paris. The content of
the encoding 001 could be Ralph while the content of the encoding 010 could be
another employee, Sandro. If there are only two possible bits of information and all
eight employees need one unique encoding, we cannot send a message specifying
which employee got the trip since there aren’t enough options in the encodings to go
round. An encoding of at least three bits is needed to give each employee a unique
encoding.

Dretske’s semantic theory of information defines the notion of content to be com-
patible with Shannon’s information theory, and his notions have gained some trac-
tion within the philosophical community [8].1 To him, the content of a message and
the amount of information in message – the number of bits an encoding would re-
quire – are different, for “saying ‘There is a gnu in my backyard’ does not have
more content than the utterance ‘There is a dog in my backyard’ since the former
is, statistically, less probable” [8]. According to Shannon, there is more information
in the former case precisely because it is less likely than the latter [8]. So while
information that is less frequent may require a larger number of bits in encoding,
the content of information should be viewed as to some extent separable if compat-
ible with Shannon’s information theory, since otherwise one is led to the “absurd
view that among competent speakers of language, gibberish has more meaning than
semantic discourse because it is much more less frequent” [8]. Is there a way to pre-
cisely define the content of a message? Dretske defines the content of information
as “a signal r carries the information that s is F when the conditional probability of
s’s being F , given r (and k) is 1 (but, given k alone, less than 1). k is the knowledge
of the receiver” [8]. To simplify, the content of any information-bearing message is
whatever is held in common between the source and the receiver as a result of the
conveyance of a particular message. While this is similar to our definition of infor-
mation itself, it is different. Information can measure the total in common between a
source and receiver simpliciter. For example, two non-local humans can share quite
a lot in common, and so share information, despite never having conveyed a mes-
sage between each other. The content is whatever is shared in common as a causal
result of a particular message, such as the conveyance of sentence ‘Ralph won a
ticket to Paris to visit the Eiffel Tower.’

In our example, the message that ‘Ralph won a plane ticket to Paris to visit the
Eiffel Tower’ can be encoded in two different languages and still have the same
relationship to content. The relationship of an encoding to its content is an inter-
pretation. The interpretation - usually via some interpreting agent be it either man
or machine - ‘fills’ in the necessary background left out of the encoding, and maps
the encoding to some content. In our previous example using binary digits as an en-
coding scheme, a mapping could be made between the encoding 001 to the content
of Ralph while the encoding 010 could be mapped to the content of Sandro. The

1 For an empirical justification of basing our work on Dretske’s work, note that Dretske has
more than a magnitude more citations than Floridi.
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content of a particular message depends very much on the encoding scheme used by
the interpreter. For example, one can interpret the encoding 11 as either the number
eleven in the decimal encoding scheme, or the number three in the binary encod-
ing scheme. Unlike many others, including Dretske, we shall make no claims about
the nature of information, interpretation, and truth, in particular if what appears to
be ‘false’ information is really misinformation or pseudo-information. This opens
the door to the possibility of a sender sending an encoded message to a receiver that
lacks the necessary capacity or resources of the receiver to decode it in the traditional
paradigm of communication. The encoding would not then have an interpretation to
content. This would be the standard definition of data, which is information without
an interpretation. One example would be if the message from Daniel that Ralph had
won the plane ticket had been delivered via e-mail in French. A non-French speaker
could have been aware of some very limited aspects of the e-mail (such as the time
sent and the sender), but she would lack the necessary knowledge of French to de-
code the message’s content and so to have an interpretation of the message. These
terms are all illustrated in Figure 1. A source is sending a receiver a message. The
information-bearing message realizes some particular encoding such as a few sen-
tences in English and a picture of the Eiffel Tower, and the content of the message
can be interpreted to be about the Eiffel Tower.

Fig. 1 Information, Encoding, Content

4 Digitality

One of the defining characteristics of information is that it can be digital, bits and
bytes being shipped around by various protocols. However, we tend to know if
something is digital when we spot it, and we can build digital devices, but devel-
oping an encompassing notion of digitality is a difficult task, whose solution we can
only sketch here. One philosophical essay that comes surprisingly close to defining
a notion of digitality is Nelson Goodman’s Languages of Art: Given some physically
distinguishable marks, which could compose an encoding, Goodman [12] defined
marks as “finitely differentiable” when it is possible to determine for any given mark
whether it is identical to another mark or marks. This can be considered equivalent to
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how in categorical perception, despite variation in handwriting, a person perceives
hand-written letters as being from a finite alphabet. So, equivalence classes of marks
can be thought of as an application of the philosophical notion of types. This seems
close to ‘digital,’ so that given a number of types of content in a language, a system
is digital if any mark of the encoding can be interpreted to a one and only one type
of content. Therefore, in between any two types of content or encoding there can not
be an infinite number of other types. Digital systems are the opposite of Bateson’s
famous definition of information: Being digital is simply having a difference that
does not make difference [1]. This is not to say there are characteristics of a mark
which do not reflect its assignment in a type, and these are precisely the character-
istics which are lost in digital systems. So in an analog system, every difference in
some mark makes a difference, since between any two types there is another type
that subsumes a unique characteristic of the token. In this manner, the prototypical
digital system is the discrete distribution of integers, while the continuous numbers
are the analog system par excellence, since between any real number there is another
real number. The digital should include more: sentences in a language that can be
realized by sound-waves or the text in an e-mail message that can be re-encoded as
bits, and then this encoding realized by a series of voltages. Since the content of the
information can be captured perfectly by the particulars of the encoding, this digital
encoding can thus can be copied safely and effectively, just as an e-mail message
can be sent many times or a digital image can be reproduced countlessly.

Lewis took aim at Goodman’s interpretation of digitality in terms of determin-
ism by arguing that digitality was actually a way to represent possibly continuous
systems using the combinatorics of discrete digital states [20]. To take a less lit-
eral example, discrete mathematics can represent continuous subject matters. This
insight caused Haugeland to point out that digital systems are always abstractions
built on top of analog systems [16]. Haugeland further reveals the purpose of dig-
itality to be “a mundane engineering notion, root and branch. It only makes sense
as a practical means to cope with the vagarities and vicissitudes, the noise and drift,
of earthy existence” [16]. Yet Haugeland does not tell us what digitality actually is,
although he tells us what it does, and so it is unclear why certain systems like com-
puters have been wildly successful due to their digitally (as in the success of analog
computers was not so widespread), while others like ‘integer personality ratings’
have not been as successful. Without a coherent definition of digitality, it is impos-
sible to even in principle answer questions like whether or not digitality is purely
subjective [22].

Rather than fall into idealistic subjectivity, we hold that certain physical processes
have the objective and material potential to be digital if interpreted in a particular
manner - and so while interpretation does matter, it is constrained by the encoding
present. Note that different interpreters can interpret the same physical encoding as
‘digital’ in different ways, as the marks “11” can mean eleven in decimal and three
in binary notation. There are multiple ways one can state a system is digital since
digitality is a convergence between a kind of interpretation and an encoding that
physically implements a correspondence between the possible states of the message
and discrete types of content. So something can only be digital when content is taken
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into account: digitality can be defined as a relationship from an encoding to content
where the encoding is finitely differentiable and the type of the encoding determines
the content. In order to distinguish these types in the encoding that uphold digitality,
there must be some physical regularity that serves as a boundary that is upheld by
the physical structure of the message. When reading letters in a book, the forms
of the letters serve as the boundary, not any minor variations in the quality of the
printing – these analog details are left out of our interpretation. If we attempt to use
an analog encoding, such as writing letters in water, the physical substrate does not
have the proper physical characteristics so that digitality seems to elude us.

To implement a digital system, there must be a small chance that the system can
be considered to be in a boundary state that is not part of the discrete types given
by the encoding. The regularities that compose the physical boundary allows within
a margin of error a discrete boundary decision to be made in the interpretation of
the encoding. So, a system is capable of upholding digitality if that buffer created
by the margin of error has an infinitesimal chance at any given time of being in a
state that is not part of the encoding’s discrete state. For example, the hands on a
clock can be on the precise boundary between the markings on the clock, just not
for very long. In a digital system, on a given level of abstraction, the margin of er-
ror does not propagate upwards to other levels of abstraction that supervene on the
earlier level of abstractions. This first level of abstraction is ‘first-order’ digital, and
other latter levels can be ‘higher-order’ digital. First-order digital created from ana-
log physics, as we have outlined earlier, and of course higher-order digital systems
can be created on top of lower-order digital systems. Although in a discrete inter-
pretation, the encoding must be finitely differentiable, the content – as interpreted
by an agent – does not have to be capable of being divided into a finite number of
discrete types. For example, the encoding 00 could map to the content “Any human
except Ralph or Sandro.” Or, in order to capture apparently analog music stored in
a digital format, one should sample the wavelength twice as often as the highest
frequency of the waveform, and this leads the human to have an analog experience
of the music when the music is interpreted by their stereo. So, higher-order analog
can be built on top of lower-order digital systems. Furthermore, digital systems are
based on our pre-digital world. This is no small achievement: We can create physi-
cal substrata that have low probabilities of being in states that do not discretely map
to content at a given level of abstraction. As put by Turing, “The digital computers
... may be classified amongst the “discrete state machines,” these are the machines
which move by sudden jumps or clicks from one quite definite state to another.
These states are sufficiently different for the possibility of confusion between them
to be ignored. Strictly speaking there are no such machines. Everything really moves
continuously” [28]. While “the world as we sense it on the human scale is basically
analog” [18], the vast proliferation of digital technologies is possible because there
are physical substrata, some more so than others, which give us the advantages that
Haugeland rightfully points out is the purpose of the digital: flawless copying and
perfect reliability in a flawed and imperfect world [16].
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5 Representations

Content matters! Content can be local, as when a message between two computers
to ‘display these bytes on the screen can translate these bytes to the screen directly
without any worry about what those bytes represent to a human user. However, the
content of the message may involve some distal components, such as the string
“Ralph won a ticket to the Eiffel Tower in Paris,” which refers things like the Eiffel
Tower outside of causal reach of the computer. Any encoding of information that
has non-local content is called a representation. Representations are then a subset
of information, and inherit the characteristics outlined of all information, such as
having one or more possible encodings. This strikes to the heart of intentionality:
to have some relationship to a thing that one is disconnected from is to be about
something else. Generally, the relationship of a thing to another thing to which one
is immediately causally disconnected is a intentional relationship of reference to
a referent or referents, the distal thing or things referred to by a representation.
The thing which refers to the referent(s) we call the ‘representation,’ and take this
to be equivalent to being a symbol. Yet there is a great looming contradiction: if
the content is whatever is held in common between the source and the receiver as
a result of the conveyance of a particular message, then how can the source and
receiver share some information they are disconnected from?

We will have to make a somewhat convoluted trek to resolve this paradox. The
very idea of representation is usually left under-defined as a “standing-in” intuition,
so that a representation is such by virtue of “standing-in” for its referent [17]. The
classic definition of a symbol from the Physical Symbol Systems Hypothesis is the
genesis of this intuition regarding representations [23]: “An entity X designates an
entity Y relative to a process P, if, when P takes X as input, its behavior depends
on Y .” There are two subtleties to Newell’s definition. Firstly, the notion of a repre-
sentation is grounded in the behaviour of an agent. So, what precisely counts as a
representation is never context-free, but dependent upon the agent completing some
action in lieu of interpreting the representation. Second, the representation simulates
its referent, and so the representation must be local to an agent while the referent
may be non-local: “This is the symbolic aspect, that having X (the symbol) is tan-
tamount to having Y (the thing designated) for the purposes of process P” [23]. We
will call X a representation, Y the referent of the representation, a process P the
representation-using agent. This definition does not seem to help us in our goal of
avoiding physical spookiness, since it pre-supposes a strangely Cartesian dichotomy
between the referent and its representation. To the extent that this distinction is held
a priori, then it is physically spooky, as it seems to require the referent and repre-
sentation to somehow magically line up in order for the representation to serve as a
substitute for its missing referent.

The only way to escape this trap is to give a non-spooky theory of how rep-
resentations arise from referents. Brian Cantwell Smith tackles this challenge by
developing a theory of representations that explains how they arise temporally [27].
Imagine Ralph finally gets to Paris and is trying to get to the Eiffel Tower. In the dis-
tance, Ralph sees the Eiffel Tower. At that very moment, Ralph and the Eiffel Tower
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are both physically connected via light-rays. At the moment of tracking, connected
as they are by light, Ralph, its light cone, and the Eiffel Tower are a system, not
distinct individuals. An alien visitor might even think they were a single individual,
a ‘Ralph-Eiffel Tower’ system. While walking towards the Eiffel Tower, when the
Eiffel Tower disappears from view (such as from being too close to it and having the
view blocked by other buildings), Ralph keeps staring into the horizon, focused not
on the point the Eiffel Tower was at before it went out of view, but the point where
he thinks the Eiffel Tower would be, given his own walking towards it. Only when
parts of the physical world, Ralph and the Eiffel Tower, are now physically separated
can the agent then use a representation, such as the case of Ralph using an internal
“mental image” of the Eiffel Tower to direct his walking towards it, even though he
cannot see it. The agent is distinguished from the referent of its representation by
virtue of not only disconnection but by the agent’s attempt to track the referent, “a
long-distance coupling against all the laws of physics” [27]. The local physical pro-
cesses used to track the object by the subject are the representation. This notion of
representation is independent of the representation being either internal or external
to the particular agent, regardless of how one defines these boundaries.2 Imagine
that Ralph had been to the Eiffel Tower once before. He could have marked its lo-
cation on a piece of paper by scribbling a small map. Then, the marking on the map
could help guide him back as the Eiffel Tower disappears behind other buildings in
the distance. Any definition of representation worth its salt should be capable of in-
cluding ‘external’ representations, which are just as, if not more important than, the
possibility of the existence of internal representations implemented neurally. Instead
of positing a connection between a referent and a representation a priori, represen-
tations are introduced as products of a temporal process. This process is non-spooky
since the entire process is capable of being grounded out in physical causation with-
out any spooky action at a distance. To be grounded out in physics, all changes must
be given in terms of connection in space and time. Representations are “a way of ex-
ploiting local freedom or slop in order to establish coordination with what is beyond
effective reach” [27]. In order to clarify Smith’s story and improve the definition of
the Physical Symbol Systems Hypothesis, we consider Smith’s theory of the “origin
of objects” to be a representational cycle with distinct stages [14]:

• Presentation: Process S is connected with process O.
• Input: The process S is connected with R. Some local connection of S puts R in

some causal relationship with process O via an encoding. This is entirely non-
spooky since S and O are both connected with R. R eventually becomes the rep-
resentation.

• Separation: Processes O and S change in such a way that the processes are dis-
connected.

• Output: Due to some local change in process S, S uses its connection with R to
initiate local meaningful behavior that is in part caused by R.3

2 The defining of “external” and “internal” boundaries is actually non-trivial, as shown in
earlier work[15].

3 In terms of Newell’s earlier definition, 0 is X while S is P and R is Y .
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Fig. 2 The Representational Cycle

In the ‘input’ stage, the referent is the cause of some characteristic(s) of the infor-
mation. The relationship of reference is the relationship between the encoding of the
information (the representation) and the referent. The relationship of interpretation
becomes one of reference when the distal aspects of the content are crucial for the
meaningful behavior of the agent, as given by the ‘output’ stage. This is pure behav-
iorism insofar as the behavior may simply be impact on the cognitive structure of the
agent, not necessarily ‘observable’ behavioral responses. So we have constructed an
ability to talk about representations and reference while not presupposing that be-
havior depends on internal representations or that representations exist a priori at
all. Representations are only needed when the relevant intelligent behavior requires
some sort of co-ordination with a non-local thing. In this manner, the intentional
status of representations can then be defined as the interpretation of a representa-
tion to a referent(s). This would make our notion of representation susceptible to
being labeled a correspondence theory of truth [26], where a representation refers
by some sort of structural correspondence to some referent. However, our notion of
representation is much weaker, requiring only a causal history between the referent
and the representation - and not just any causal relationship (since those would be
nearly infinite!), but one that changes the behavior of interpreting agent as a result
of the interpretation of the representation. This is opposed to some tighter notion
of correspondence such as some structural ‘isomorphism’ between a representation
and its referent [6].

The interpretation of representations should therefore not be viewed as mapping
to referents, but a mapping to some content where that content leads to meaning-
ful behavior precisely because the content is non-local. Up until now, it has been
implicitly assumed that the referent is some physical entity that is non-local to the
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representation, but the physical entity was still existent, such as the Eiffel Tower.
However, remember that the definition of non-local includes anything the represen-
tation is disconnected from, and so includes physical entities that may exist in the
past or the future. The existence of a representation does not imply the existence
of the referent or the direct acquaintance of the referent by the agent using a rep-
resentation – a representation only implies that some crucial aspect of the content
is non-local. However, this seems to contradict our ‘input’ stage in the representa-
tional cycle, which implies that part of our definition of representation is histori-
cal: for every re-presentation there must be a presentation, an encounter with the
thing presented. By these conditions, the famous example of Putnam’s ant tracing
a picture of Winston Churchill by sheer accident in the sand would not count as
a representation [24]. If Ralph didn’t know where the Eiffel Tower was, but navi-
gated the streets of Paris and found the Eiffel Tower by reference to a tracing of a
Kandinsky painting in his notebook, then Ralph would not then be engaged in any
representation-dependent meaningful behavior, since the Kandinsky painting lacks
the initial presentation with the Eiffel Tower. The presentation does not have to be
done by the subject that encountered the thing directly. However, the definition of
a representation does not mean that the same agent using the representation had to
be the agent with the original presentation. A representation that is created by one
agent in the presence of a referent can be used by another agent as a ‘stand-in’ for
that referent if the second agent shares the same interpretation from encoding to
distal content. So, instead of relying on his own vision, Ralph buys a map and so
relies on the ‘second-order’ representation of the map-maker, who has some histori-
cal connection to someone who actually traveled the streets of Paris and figured out
where the Eiffel Tower was. One can obviously refer to Gustave Eiffel even though
he is long dead and buried, and so no longer exists. Also, the referent of a represen-
tation may be a concept, like the concept of a horse, unicorns and other imaginary
things, referents to future states such as ‘see you next year,’ and descriptive phrases
whose supposed exact referent is unknown, such as ‘the longest hair on your head
on your next birthday.’

One could claim that the Eiffel Tower is simply the wrong kind of content one
should be worried about as regards representation, and that one should rather be
concerned with more exotic examples of infinitaryy objects such as ℵ1. We would
counter that it is precisely the ordinariness of the Eiffel Tower that is more impor-
tant, as we can follow Clark’s line that the more exotic kinds of representations
descend from capabilities of abstraction developed out of sensory-motor apparatus
and memory evolved in dealing with ordinary objects like the Eiffel Tower [4] - and
any scientifically minded philosopher would have a hard time arguing the reverse,
namely that the ability to represent infinitary objects like ℵ1 somehow evolution-
arily preceded the ability to represent more mundane objects like the Eiffel Tower.
The Eiffel Tower example also is actually necessary for, rather than superseded by,
any supposed ‘simulation’ theory of representation [13]. After all, the very concept
of simulation only works if there is a world to simulate. In the case, the spatio-
temporally distal object the Eiffel Tower is exactly necessary to have some kind of
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causal (perhaps via an historical chain, one even spread out over evolutionary time)
relationship to the simulation itself, the presentation implicit in any representation.

6 Conclusion

As digitality can be thought of as a convergence between the encoding and con-
tent of information, and representations as information with a non-local content, the
once-insurmountable problem of digital representations then becomes rather sim-
ple: digital representations are merely digital information with non-local content.
Taking as a starting point the purely causal representational cycle, a purely materi-
alist reading of digital representations is then possible. If we identify embodiment
with a certain reductive materialism, then this story lets digital representations be
reconciled with embodiment. Thus, we hope our goal has the fear from certain ad-
vocates of embodiment that somehow digital representations are at their core non-
materialist and anti-scientific, much less metaphysically implausible. Yet, we should
also be aware of the limitations of this story we have sketched here about digitality
and representations; namely this is simply a sketch to serve as what Dennett would
call an “intuition pump” for a much larger story that we can hardly do justice to at
this stage [7]. Massive amounts of empirical evidence needs to be gathered before
we can understand the myriad possible couplings between digitality and our intu-
itions regarding a primarily pre-digital world, as well as the delicate intertwining of
representations and our presence in the world, and a million other questions besides.
Without a doubt, a much more thorough analytic argument can and should be both
proposed and empirically tested. Yet without such a guiding definitional sketch as
presented here, such an analysis are, such an endeavor would be mired in a confus-
ing Tower of Babel of differing terminology and intuitions that seek to eliminate
each other on metaphysical grounds.

There is a latent contradiction which we did not solve that requires further work:
namely, as representations are defined by separation over time and space, the inex-
orable trajectory of computation in the era of the Internet is to eliminate this very
division of time and space. The cycles of representation become ever more infinites-
imal as the Internet interconnects referents ever closer with their representations. At
a certain point, the operative question becomes whether or not the representation
simply becomes a new kind of first-class object?4 In other words, the ontology of
the world is dynamic, created as an enactment between a multiplicity of referents
and representations that alter each other in turn. A representation of an object is the
spreading out of an object in time and space. It is not to say that the representa-
tional cycle and its vocabulary of referents disappear, but that they are mediated by
objective sense and that the formation of a representation is just the first step of the

4 This is distinctly opposed to the viewpoint of certain post-structuralist or postmodern the-
orists like Baudrillard that hold that representations are ‘copies’ that are just as real or
true as their original referent. Instead, we challenge this belief in a singularly real or au-
thentic (and so static) ontology by incorporating the referent and representation into a new
ontological object.
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unfolding of a new kind of object. In such a dialectic, the map becomes the territory.
With the advent of digital technologies, not only the map becomes digital, but the
territory itself. This points out a certain radical notion that dooms all semantic the-
ories of information, namely that representations are not mere mirrors of the world,
but representations are ontologically disruptive in of themselves. Merely semantic
theories of information punt on the difficult questions of metaphysics and ontology,
yet what we find in our increasingly digital and representational world is that such
questions are now pressing upon us with such force that we ignore them at our own
peril.
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A Pre-neural Goal for Artificial Intelligence

Micha Hersch

Abstract. From its onset, the discipline of Artificial Intelligence aimed at under-
standing intelligence through a synthetic approach. Over time, progress has been
made by considering lower and lower levels of intelligence. I argue that this trend
should be completed by its next step by considering pre-neural forms of intelligence
as models for AI. To justify the relevance of such primitive cognition to intelli-
gence, I recall the works of Piaget, Jonas and Maturana and Varela. By considering
how these authors relate to the question of teleology, I illustrate the kind of in-
sights a pre-neural AI could provide, which pertain to fundamental aspects of natural
cognition.

1 Introduction – The Neural Consensus

The numerous debates surrounding the discipline of Artificial Intelligence (AI) have
failed to provide any commonly accepted definition of intelligence, be it natural or
artificial. Yet, regarding natural intelligence, there seems to be an unspoken neces-
sary condition accepted by the overwhelming majority of the AI community. This
condition is that natural intelligence is implemented in neural circuits. This is the
case for the proponents of symbolic AI which use human reasoning as their model,
for connectionists, which are explicitly interested in neural networks, for researchers
in low-level artificial intelligence who always consider neural sensori-motor coordi-
nation, and even research in swarm intelligence has taken neurally endowed insects
as its main source of inspiration. So there seems to be an underlying assumption
that intelligence emerged with the appearance of the neuron, whose capability for
fast signal transduction and adaptive connectivity allowed information processing
and eventually full-fledged intelligence. While this assumption is certainly true to a
certain extent, its corollary is to exclude any non-neural phenomenon as model for
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artificial intelligence. In this paper, I argue for a pre-neural artificial intelligence,
i. e., an artificial intelligence research program that takes pre-neural intelligence as
a model. I believe that such a program is likely to provide valuable insights into the
nature of intelligence.

In the following, I try to substantiate this claim by first providing a short ret-
rospective on AI (section 2) and elaborate on a fundamental difference between
artificial and natural intelligence, which pertains to the notion of the subject (Sec-
tion 3). I will then briefly mention three theories that draw a continuum between life
and cognition, claiming that cognition cannot be understood outside of its anchor,
the living system (section 4), and thus justifying a pre-neural approach to AI. Doing
so will provide an illustration of the kind of questions a pre-neural AI may try to
contribute to, which will be discussed in section 6.

2 The Evolution of AI

The relatively recent discipline of Artificial Intelligence (AI) emerged as an off-
spring of the older discipline of logic. As it appeared, it took up the task modern
logic had initially set to itself, which was the study of human thinking. Indeed, for
the founders of modern logic such as Boole, the aim of logic was to “to investigate
the fundamental laws of these operations of the mind by which reasoning is per-
formed, to give expression to them in the symbolical language of calculus” [3, p.3].
De Morgan expressed a similar view in the first sentence of his Syllabus, which
states that “logic analyses the forms, or laws of action, of thought” [4, p.9] and
Frege’s Begriffschrift is an attempt to find the “formal language of pure thought”
[9]. Beyond the formalism, logicians were interested in human thinking abilities,
and more precisely in rational thinking, which was considered the “pure” thinking.

Likewise, the General Problem Solver, one of the first artificial intelligence sys-
tems is considered by its author to “simulate human thought”[21]. And indeed, the
kinds of problems this approach set out to solve, were certainly human problems
like proving theorems and playing chess. Although the basic assumptions under-
lying this “Good Old-Fashioned AI” [11] were questioned by philosophers such
as Dreyfus [5] and Searle [29], its initial successes promoted the wide acceptance
of this symbolic, logical approach to artificial intelligence within the engineering
community.

However, as some of its overly optimistic promises failed to be fulfilled, in the
eighties the connectionist approach [27] met a renewed interest with the work of
Hopfield [14] and others. This approach, in which artificial neural networks occu-
pied the center stage, was clearly inspired by the brain physiology. It emphasized
the perceptual aspect of intelligence as well as the learning abilities, focusing on
problems such as pattern recognition. As such this approach enlarged its scope to
encompass not only human thinking but also mammalian thinking, for example by
considering Pavlovian reflexes in rabbits [26] or the navigation abilities of rats [1].
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One decade later, it was argued that intelligence had to be understood at the level
of behavior. Coming from the robotics community, a claim was made that the goal
of AI was not to “simulate” intelligence, but to actually implement it in a real envi-
ronment [30], and more precisely in a robotic device. This led to the revival of the,
by then, somewhat forgotten cybernetics tradition, which emphasized sensori-motor
couplings as a way to produce intelligent behavior. It considered problems like ob-
stacle avoidance and light following. Combined with influences from Varela’s en-
active theory of cognition [33], this led to the appearance of embodied cognition
as a new framework for the study of artificial intelligence. According to this the-
ory, intelligence cannot exist in a vacuum, but must be grounded in an environment
through a body. Cognition emerged to enable to adequately guide the actions of the
body in a given environment and can only be understood in this context. As bio-
logical models displaying this kind of sensor-motor coordination, animals such as
turtles [13] were used.

The evolution described above, although slightly caricatural, is indicative of a
general trend. The model of intelligence used by AI researchers has evolved from
human intelligence, through mammalian intelligence to vertebrate intelligence. The
interest of AI research has shifted from high to low level intelligence and has thus
followed an evolution backward with respect to the evolution of natural intelligence.
The main drive for this evolution is the observed gap between natural and artificial
intelligence.

3 The Ontological Gap

At the onset of artificial intelligence, the existence of a fundamental gap between
natural and artificial intelligence was not clear to most of the AI community, despite
strong arguments put forth by philosophers [5]. However, over the years this has
become more and more widely recognized. A few observations on the brief history
of AI hint at this gap. One such observation is that what is most easily performed by
artificial intelligence is most difficult to do for natural intelligence and vice-versa.
Indeed, it turned out to be easier to beat Kasparov at chess than to beat a four year
old kid at bedtime story understanding. This very strongly suggests that the modes
of operation of artificial and natural intelligence greatly differ from one another,
which is related to very different modes of being.

A related observation, also pointed out in [8], is that the explanatory power of
traditional AI is very limited. Indeed recent successes such as a Jeopardy! player,
do not provide any insight on how a human can play such a game. In fact it was
not the intention of its developer to do so [7]. Thus, part of the AI community
has departed from its initial goal of “understanding intelligence” [23]. Those who
did not, adopted the more recent approaches to AI such as embodied cognition.
Not surprisingly, the explanatory power of artificial intelligence has increased with
the evolution of AI to lower levels of intelligence. For example, it could be shown
how simple optical flow computations could steer a flying device the same way
a fly controls its flight [36], or how a subjective representation of the body can
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be acquired through sensori-motor contingencies [12], or how the salamander can
control its amphibian locomotion [15].

However, if situating intelligence in a body in constant dynamical interaction
with its environment has provided interesting insights into the intermingling of in-
telligence, the body and the environment, it has only filled a fraction of the gap be-
tween natural and artificial intelligence which still remains abyssal. As mentioned in
[10], current artificial systems still lack any sense of meaning and of agency. These
notions remain foreign to artificial intelligence and unexplained in natural systems.

In the rest of this paper and for illustration purposes, I will focus on one ele-
ment of agency, namely the concept of teleology. This concept, which had vanished
from our post-aristotelian scientific tradition was reintroduced by by the proponents
of cybernetics such as Wiener [28]. In doing so, they stripped off its causal nature
and explained it by a causal mechanism, the negative feedback loop. To clearly em-
phasize the non-causal aspect of this new teleology, it was then dubbed teleonomy.
This concept, echoing Waddington’s canalization processes in biological systems
[35], has been extended into the study of attractor dynamical systems which have
been widely used for understanding of animal behavior [18] and for controlling the
behavior of artificial systems.

4 Cognition as a Continuation of Life

In order to understand the origin of the thinking subject in general and teleology
in particular, it is worth considering simpler forms of intelligence, or minimal cog-
nition [32]. Indeed some prominent thinkers have argued for a continuity between
biological processes and intelligence, a view adopted in the Alife community [30].
According to this view, intelligence and in particular neural intelligence is an out-
growth of life and should thus be considered in this light. In the following, I will
briefly mention the position of four influential figures, Piaget, Jonas and Maturana
(and his student Varela), who, while all emphasizing this continuity, reach different
conclusions on the notion of telelogy for the development of intelligence.

4.1 Piaget and the Promise of Cybernetical Teleolonomy

Jean Piaget was a trained biologist turned psychologist and epistemologist. He is
probably mostly known within the AI community to researchers focusing on devel-
opmental robotics for his work on sensori-motor loops and imitation in newborns
and children [24], as this work has inspired many in the field [22, 2].

In a later book “Biology and knowledge”[25], Piaget studied “the relations be-
tween organic regulations and cognitive processes”. For him, “life is essentially self-
regulation” (p.48) through processes such as assimilation and accomodation. And
cognitive processes are “a result of organic self-regulation of which they reflect the
essential mechanisms” (p.49). Cognition must then be understood in the broader
framework of self-regulation. And here Piaget recognized the relevance of cyber-
netics in the theoretical understanding of self-regulation, and even counted the use
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of “mathematical and cybernetical models” as one of the four methods for his inves-
tigations (p.93). Indeed he states that “all concepts of cybernetics are of immediate
signification for the cognitive domain” 1(p. 95). In this context he seems to fully
adopts Wiener’s teleonomical explanation of behavior. For him, natural systems,
like cognitive processes, are purposeful, and this purposefulness can be explained
in term of regulatory mechanisms such as the feedback loop.

4.2 Jonas and the Fallacy of Cybernetical Teleolonomy

Hans Jonas, a student of Heidegger, attempted to lay the foundation for a philosoph-
ical biology in his book “The phenomenon of life” [17]. There he also argues for a
continuity between biological process and intelligence, and more generally between
life and mind. According to him, life is a precursor of the mind and as such contains
in essence the necessary ingredients of human intelligence. And the hallmark of life
(or its simplest form) is metabolism. Intelligence as we know it in natural systems
is an outgrowth of metabolism and has thus inherited its mode of operation. The
continuum between simple cell metabolism and the human mind can be described
along four axes.

1. The first axis is the notion of teleology. For Jonas, organisms are by essence tele-
ological. Their behaviors are guided by a purpose, a goal, which originates in
themselves. We could call this the teleological closure. The most basic purpose,
which is present in the simple cell, is the preservation of its structure, as an or-
ganized self distinct from the environment. The behavior of the cell is usually
organized around this goal.

2. The second axis is the notion of identity. Organisms develop a sense of identity,
as a whole distinct from the environment, that need to be preserved through a
teleological behavior. In its most sophisticated form, the sense of identity devel-
ops into the human conscience.

3. The third axis is the notion of desire (or instinct, emotions). The desire comes
from the difference between the goal and the present situation of the organism.
As such it helps maintaing the goal and eventually reaching it. It is the drive to
the goal.

4. The fourth axis is the notion of freedom. The most basic freedom experienced
by the organisms is the freedom of form (or structure) with respect to matter. It
is the ability to survive and transcend, the matter which constitutes it. Organisms
tend to increase their freedom (for example through mobility), as it will provide
them more opportunities to reach their goals.

According to Jonas, the set of explanatory categories needed to account for life and
mind differs from those that were developped for Descartes’ res extensa. As such,
attempts such as those of Piaget, to explain life and mind as if their nature was
the same as that of inanimate objects is bound to fail, as they contradict our own
experience as living subjects.

1 Our translations.
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Consistently with his theory, Jonas specifically criticizes the cybernetical tele-
ology as a fallacy, in a dedicated essay of his book [16]. For Jonas, the feedback
loop or any other regulatory mechanism, is a means to achieve a purpose but it will
never originate the purpose itself. According to him, Wiener’s teleonomical ma-
chines merely accomplish the purpose of their users, not their own. Cybernetical
teleolonomy blurs the basic difference between the existence of a purpose and its
realization. As such, while teleology needs to be explained, the cybernetical expla-
nation is far from satisfactory.

4.3 Maturana and Varela and the Irrelevance of Teleolonomy

Francisco Varela and his mentor and colleague Maturana are probably the primary
source of inspiration for the embodied cognition approach to artificial intelligence.
They formulated the concept of autopoiesis and described its relationship to cogni-
tion in their book “Autopoiesis and cognition” [19]. According to their definition, an
autopoietic system can be understood as a system that continously generates its own
components and maintains itself as a unity in the space in which its components
exist. Autopoeitic systems are autonomous, as they are their own producers and
maintain their own organization and thus their own identity. The cell is the paradig-
matic autopoeitic system and other examples include the immune system [34] or the
human being. In this framework, cognition is defined as the phenomenological do-
main generated by autopoiesis, in other words the experienced reality resulting from
autopoiesis. Now, since autopoietic systems generate their own domains and their
own reality, any relevant description of such system has to use concepts that pertain
to its phenomenological domain or to a universal logic that is valid for all phe-
nomenological domains. Otherwise, the description only conveys knowledge about
the observer, as it is expressed in terms belonging to the world of the observer, which
can be unrelated to the world of the observed. In particular, as clearly stated in the
chapter entitled “Dispensability of teleonomy” [20] the use of teleonomy to explain
living systems is irrelevant. The notion of purpose is within the observer and does
apparently not belong to the universal logic of phenomenological domains, and in
general, autopoietic systems are taken to be purposeless.

Thus, according to Maturana and Varela, the cybernetical explanation of purpose
addresses a wrong problem, and its description in terms of inputs and outputs is
misleading as autopoietic systems have neither inputs nor outputs, they are opera-
tionally closed.

5 Pre-neural Artificial Intelligence

We see that, while emphasizing the continuity between life and cognition, the three
theories described above have very different position on the notion of purpose. For
Piaget it is a result of regulatory mechanisms, for Jonas it is fundamental to any
explanation of life and mind but remains to be reconciled with mechanistic causality,
and for Maturana and Varela it belongs to the observer and is not an intrinsic feature
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of autopoietic systems, meaning that purposeless cognition is in their sense perfectly
possible.

Artificial intelligence, with its synthetic approach, can attempt to probe these hy-
potheses. And thanks to the hypothesized continuity between life and cognition, it
can do so by using pre-neural models of cognition. One candidate for such a model
is plant intelligence [31]. There are a number of reasons for using plants as a model
of intelligent system. First, plants display remarkable behaviors, the sophistication
of which is often underestimated. Plants optimize their access to natural ressources
such as light and nutrients, they can anticipate seasonal changes and adapt to very
different environmental conditions. They can clearly be seen as displaying teleo-
logical behavior like phototropism or pathogen fighting. Moreover, the absence of
a central nervous system makes the signal processing indistinguishable from the
behavior. This results in a different view of intelligence and sensori-motor coordi-
nation, whithout a clear distinction between the sensory and the motor domains.
They also interact with other plants and insects by sending and perceiving chemi-
cal signals so that their ecology can be seen as a primitive social context. Another
interesting feature of plants is the hormonal regulation of their behavior, an aspect
that is often neglected in AI models of neural intelligence. Thus plant cognition,
unlike lower-level cellular cognition, is sufficiently complex to go beyond intracel-
lular signalling cascade and transcriptional regulation, while being more amenable
to investigation than animal cognition. Moreover, being sessile, plant bodies are
radically different from animal bodies, which results in a different kind of cogni-
tion. This kind of cognition is often neglected from the discussions on the nature of
intelligence, although it is likely to broaden our views on the topic. Indeed, by con-
sidering plant cognition, we are less likely to project our own cognitive categories,
which will ease the difficult task of objectification of intelligence, a pre-requisite to
any artificial intelligence.

The question whether plants are intrinsically purposeful has no easy answer. And
this is revealed by the paradoxical behavior of many plant biologists, who formally
design and describe their research on the assumption of mechanistic plant behavior,
but informally ascribe intentional agency to their plants. Investigating this question
will force us to better define and understand teleology in biological organisms, and
in particular whether teleology can be assessed from a third person point of view.

Maybe plant behavior can be understood and modeled without a notion of teleol-
ogy, which would show that very sophisticated and plastic behaviors, that appear to
be oriented towards a goal can be implemented without it. This would be encourag-
ing for AI, as it would push the limits of what can be expected from a purposeless
artificial agent, in terms of both robustness and diversity of behavior.

But perhaps plants do have an intrinsic notion of teleology. The goal of AI would
then be to investigate where it comes from and what it is made of. It could be that the
sense of purpose can only develop as a result of an evolutionary history. Intelligence
would thus not only require a body to be expressed, but also its grounding into an
evolutionary process to acquire its “needful freedom”[17] required for agency.

For now, the study of pre-neural cognition has been mostly restricted to bac-
terial sensory motor-systems such as chemotaxis [6], or in the perspective of
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self-organization and synchronization. While plant cognition is very different from
bacterial and neural cognition, its study is very relevant for the understanding of
intelligent and coordinated behavior. The use of such a model will likely bring new
perspectives on cognition, which may well prove fruitful.

6 Conclusion

The original endeavour of Artificial Intelligence, inherited from logic, was to under-
stand and create intelligence. Due to the difficulty of this challenge, progress could
only be made at the cost of lowering the bar for intelligence and considering low-
level cognition such as sensori-motor coordination. If AI wants to remain true to this
endeavour, it should continue in this direction and consider pre-neural intelligence,
such as the one displayed by plants. This evolution is in line with a number of the-
ories arguing for a continuity between life and cognition, such as those developped
by Piaget, Jonas and Varela. As we have seen, fundamental questions regarding the
nature of intelligence, such as the status of telelology in cognition remain relevant
and are probably more amenable to investigation in lower forms of intelligence. By
considering simpler organisms, it will be possible to better understand their mode
of being and operation and thus their cognitive aspects. This is a path the field of
artificial intelligence should resolutely engage in, lest it become one among many
engineering fields, oriented to a given set applications but indifferent to the princi-
ples of natural intelligence.
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1   Introduction 

Recently, considerable attention in AI research has been paid to multi-agent sys-
tems, or systems that comprise multiple intelligent or semi-intelligent agents inte-
racting with one another. Agents in multi-agent systems are regularly described 
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using the language of intentional states, or states which refer to or are about some-
thing outside themselves. Examples of intentional states include, but are not li-
mited to, goals, beliefs and desires. 

How seriously are we to take these ascriptions of intentional states? Are mem-
bers of multi-agent systems "true believers" in the sense that their intentionality is 
more robust, or are our ascriptions of intentionality merely a convenience of dis-
course that should not be given much weight?  These questions frame the present 
agenda of the authors, who defend a version of the former position. 

Our goal is to establish, through detailed examination of a case study, that mul-
ti-agent architectures embed the need to adopt the intentional stance toward them.  
This case study draws on work done by the University of Idaho's UUV  
(Unmanned Underwater Vehicle) research team, whose UUVs comprise a reason-
ably typical multi-agent system.  The strategy is to develop conclusions which can 
be generalized to apply to many multi-agent systems, but which are also firmly 
rooted in the specific details of our case study.  Bearing this in mind, the characte-
ristics of the UUVs which ultimately lead the authors to support attribution of  
intentional states are characteristics the UUV fleet shares with many other multi-
agent architectures.  As we move forward, we will primarily focus on establishing 
our claims with respect to our case study, saving broader generalizations about 
other multi-agent systems for the final section. 

2   Background 

In "True Believers: The Intentional Stance and Why It Works", Daniel Dennett 
outlines a certain predictive strategy he calls "adopting the intentional stance" 
(Dennett 1997, 59).  There are many sorts of stances we can adopt with respect to 
predicting the behavior of some object or system; adopting one of these stances 
amounts to highlighting one among a hierarchical stratification of conceptual le-
vels at which processes take place.  Dennett identifies the physical stance, at 
which we are concerned with the basic action of physical laws; this is the stance 
we might appropriately adopt with respect to the prediction of billiard balls.  There 
is also the design stance, in which the object or system is conceived of as de-
signed, i.e. having a purposive function.  This would be a stance appropriate to 
adopt when predicting the behavior of, say, a wristwatch.  We would expect, for 
example, that the second hand will complete one revolution around the face of the 
watch per minute, because its function is to allow its user to accurately gauge the 
passage of time. 

Dennett then goes on to characterize the intentional stance, on which we interp-
ret the object or system in question as an goal-directed agent: 

Here is how it works: first you decide to 
treat the object whose behavior is to be pre-
dicted as a rational agent; then you figure out 
what beliefs that agent ought to have, given its 
place in the world and its purpose.  Then you 
figure out what desires it ought to have, on the 
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same considerations, and finally you predict 
that this rational agent will act to further its 
goals in the light of its beliefs.  A little prac-
tical reasoning from the chosen set of beliefs 
and desires will in many - but not all - in-
stances yield a decision about what the agent 
ought to do; that is what you predict the agent 
will do.  (Dennett 1997, 61) 

Dennett's main points include the following.  First, it is perfectly legitimate to as-
cribe intentional terms like belief, desire, goal, plan, and the like to objects and 
systems, insofar as adopting the intentional stance towards those objects and sys-
tems is appropriate, that is explanatorily or predictively fruitful.  Second, it is  
impossible for one to avoid self-ascribing the intentional stance, and it is also im-
possible to avoid adopting it towards "one's fellows if one intends, for instance, to 
learn what they know." (Dennett 1997, 71). 

With respect to the UUVs that compose the University of Idaho UUV fleet, we 
establish the following: (1) The UUVs, on the grounds of intercommunication, 
hypothetical reasoning, and mutual interest in each others' available information, 
can and in fact do adopt the intentional stance with regard to each other and them-
selves.  (2) The behavior of UUVs is best understood (indeed, only fully unders-
tood) by us when we adopt the intentional stance toward UUVs.  This is in part a 
consequence of the UUV design team manifestly adopting the intentional stance 
with respect to UUVs as a solution to hypothesized and encountered mission diffi-
culties.  If this argument is successful, and Dennett is right in maintaining that any 
intentional system will be an appropriate candidate for intentional state-ascription, 
then UUVs (and, consequently, other agents that belong to sufficiently similar 
multi-agent architectures) are appropriately seen as intentional agents. 

However, as previously argued in Ray et al., we also have reason to conceive of 
the fleet as a whole as an intentional system, this would mean the fleet too would 
be considered an intentional agent, itself made up of intentional agents.  Some 
might consider this a problematic or even self-refuting view.  We argue to the con-
trary, pointing out three counter-objections.  First, that we humans ourselves are 
composed of parts, at least some of which are most usefully predicted by adopting 
the intentional stance; we also compose larger social systems that are similarly 
best understood on the intentional stance.  Second, that it is perfectly consistent to 
maintain that systems can have beliefs without their being aware of their having 
these beliefs; we regularly hold this view with respect to many types of lesser in-
telligent animals.  Finally, the whole reason we are in the business of belief-
ascription in the first place is so that we can accurately and economically predict 
behavior under different circumstances.  These considerations all lead to the con-
clusion that UUVs and UUV fleets are to be included (albeit in their proportional-
ly restricted degree), alongside ourselves and all other intentional systems, among 
the ranks of "true believers". 
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3   Inter-Agent Intentional State-Ascription 

We shall begin by considering whether or not the University of Idaho's UUVs can 
reasonably be seen to interpret themselves and their fellow UUVs by adopting the 
intentional stance; we maintain that they can and do.  To motivate this position, let 
us turn briefly to Hallin et al., in which the authors discuss the conditions that jus-
tify viewing some object or agent as appropriately "autonomous": 

"An artificial system functions autonomous-
ly when its behavior is under its own control, 
or more precisely, when the system makes de-
cisions concerning its own behavior that are 
not choreographed down to the last detail in 
advance and are responsive to changes in cir-
cumstance.  To be responsive and in control, 
the system must allow new information as in-
put to influence system output, where this  
influence is controlled by an information 
management infrastructure.  In systems that 
communicate, such as the UI UUV fleet, this 
infrastructure will include a communication 
language and associated interpretation logics.  
The information management infrastructure is 
responsible for structuring the system's actual 
I/O (input/output) behavior, and...this infra-
structure can be harnessed and put to use in 
planning for contingencies that could arise in 
the course of system operation." (Hallin, et al. 
2009, 2) 

These UUVs work collaboratively to achieve a common mission goal, e.g. the de-
tection of mine-like objects (MLOs) in a minefield, or analysis of a target ship's 
magnetic signature.  In the course of these missions and simulations thereof, the 
UUVs engage in intercommunication and hypothetical reasoning, and they have a 
mutual interest in knowing what information is available to the other UUVs in the 
fleet.  I argue that these considerations weigh in favor of the position that the 
UUVs regard one another as intentional agents, that is agents who have beliefs and 
goals, and who act on the basis of those beliefs to achieve those goals. 

Let us begin with intercommunication.  As noted in the quotation above, the 
UUV's send messages to one another, using AUVish, a language comprising 13-
bit messages designed for the UUVs (Rajala, O'Rourke and Edwards 2006).  In the 
context of a mine-countermeasure mission (MCM), the UUVs send messages con-
taining information about which UUV is speaking, the role of that UUV in the 
fleet, and information about that UUV's current task assignment (e.g. "swimming 
in formation", "inspecting an MLO", etc.).  Sometimes the messages go beyond 
mere reports; they can include, for example, a "request for permission to broad-
cast" a more detailed 32-byte message about, say, the location of an MLO.  The 
implicit assumption here is that the UUVs expect the other UUVs to understand 
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the content of these messages as they do, and modulate their behavior appropriate-
ly on the basis of the messages intentional content. 

AUVish messages contain intentional content; they are "about" the UUVs that 
send them, and in some cases they are "about" the shared environment in which 
the UUVs are operating.  The UUVs select the messages that they choose to send 
on the basis of the interaction with their environment, and their behavior is mod-
ulated on the basis of which messages they receive.  This intentional content and 
the way it modulates UUV behavior cannot be fully understood without reference 
to the representational content contained in these messages; this means that Den-
nett's condition, that there be predictive and explanatory usefulness of one UUV 
adopting the intentional stance toward another, is fulfilled. 

An important parallel between the UUVs' intercommunication and the inter-
communication of agents whose intentional status is less questionable (e.g. human 
beings) is that, like us, the UUVs can make mistakes.  Because they are not infal-
lible, it is necessary for the UUVs to distinguish between "the facts" (even if this 
is just a view of the facts from that UUV's perspective) and "the beliefs of the 
message sender".  Also, sometimes messages get "lost in the shuffle", either due to 
technical failure or the intervention of environmental noise.  In these situations, 
hypothetical reasoning is employed to correct error or maximize the fleet's effi-
ciency in future actions.  Using a Language Centered Intelligence (LCI) module, a 
UUV can generate hypotheses about future, present, or past scenarios by drawing 
conclusions based on the combination of information about the environment cur-
rently available to the UUV and other, hypothetical or counterfactual information 
about scenarios that may come to be or information that the UUV might be pre-
sently mistaken about (Hallin, et al. 2009).  For example, a UUV might run 
through alternative power replacement scenarios if a battery is running low, or it 
might project anticipated messages from other UUVs for substitution in the event 
of an incomplete or missing message.  The projection of hypothetical scenarios 
suggests that the UUVs must make a distinction between "the facts" and "beliefs" 
in their own case as well.  Were there no such distinction, the UUVs would have 
no principled reason to act on some pieces of information but not on others.  This 
underwrites self-ascription of the intentional stance on behalf of the UUVs. 

Finally, and perhaps obviously, UUVs, have a mutual interest in the informa-
tion available to the other members of the fleet.  Information available to one 
UUV may not be immediately available to other members of the fleet.  Collecting 
and synthesizing this body of information and tracking changes made to it in real 
time is crucial to the success of UUV missions.  Also, as noted above, UUVs have 
a vested interest in tracking errors or discrepancies in this body of information, as 
these present obstacles to efficient and successful mission completion.  As Dennett 
points out, if the UUVs want to "learn what their fellows know (or believe)", they 
must attribute the intentional stance to one another, and to themselves. 

4   External Intentional State-Ascription 

But what about how we regard agents in a multi-agent system?  Might all this talk 
of UUVs intercommunicating about their knowledge and beliefs just be too fast 
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and loose?  Do they really believe?  Laying aside the question of what "real" be-
lief consists in for now, let us consider an objection on which we try to avoid 
adopting the intentional stance toward the UUVs, adopting instead the physical or 
design stances.  Adopting the physical stance here is borderline ridiculous.  The 
kinds of interactions that are going on are too complicated and on much too large 
a scale to make the physical calculations practically tractable.  Working out elec-
tron interchanges in one of the UUV circuit boards, for example, is just far too 
cumbersome to be undertaken, especially when more fruitful stances (i.e., design, 
intentional) are available.  So what about the design stance?  Well, part of the 
problem here is that, given the autonomous nature of UUVs as described above, 
the UUVs were designed to be intentional systems!  From the very beginning, de-
signers have approached the challenges presented by various missions with strate-
gies that explicitly make use of the notions that UUVs are agents with beliefs and 
goals who interact with their environment and each other in light of these.  Thus, 
an attempt on our part to adopt the design stance collapses into adopting the inten-
tional stance.  Given that the physical stance is a non-option, adopting the inten-
tional stance with regard to UUVs is the only option we have left. 

Perhaps we might argue that the artificial nature of the UUVs is grounds for 
withholding intentional status from them.  Adams and Aizawa argue that "cogni-
tion involves particular kinds of processes involving non-derived representations" 
(Adams and Aizawa 2001, 53).  Perhaps the fact that we bestowed the UUVs with 
the proper sort of structure to use the language they do, their representations are 
derivative, parasitic upon our non-derived representations, and thus UUVs are not 
properly possessed of mental states like beliefs.  But we must be careful to avoid 
organocentrism here.  To make this point clear, consider what we would say about 
a designed robot that had a silicon hardware unit that was a perfect functional 
model of an actual human brain.  On what non-question-begging grounds could 
we deny that this robot properly held beliefs?  So it cannot be a matter of medium 
or of having a designer that is the "mark of the cognitive". 

In any case, it seems perfectly reasonable to see the UUVs' representations as 
arising within them, without our mediation beyond its design.  This is, again, tied 
up with the conditions of their autonomy.  The UUVs must mediate different 
sources of information in a complex environment (e.g. position, sensor informa-
tion, incoming messages, mission time, etc.) with its own evaluative resources.  It 
must compare and evaluate different possible courses of action with respect to 
multiple competing criteria, and then select from among these the option that will 
maximize the chance of efficient and successful mission completion.  Given that 
they do all this on their own in the field and in simulation, it seems appropriate to 
identify the UUVs as the source of their own representations, undermining the ob-
jection at hand. 

5   Relationship between Collective and Individual Intentionality 

While we are considering objections to this position, let us spend some time on a 
very different type of objection to this view.  This objection turns on the idea that 
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a part of an intentional system cannot itself be an intentional system.1  This is a 
view we will ultimately reject, but before doing so, we should outline the view as 
it might be defended. 

Consider yourself.  You are, undoubtedly, an intentional system.  You have be-
liefs, desires, goals, and many other types of mental states infused with intentional 
content.  Say you believe that Stevie Wonder is a great musician; no problems so 
far.  Now consider some part of you, say, your left hand.  Can your left hand be-
lieve that Stevie Wonder is a great musician?  No, that doesn't seem right.  But 
maybe we are looking at the wrong type of part here; what about your brain?  
Does it make sense to say that your brain believes that Stevie Wonder is a great 
musician?  This also seems like a potential category mistake.  Brains don't have 
beliefs, they are where the brain-haver's beliefs are stored, or physically located, 
or some such thing.  Compare "I am thinking" with "My brain is thinking"—this 
phrasing seems awkward or uncomfortable at best.  I suggest that this awkward-
ness is what motivates the objection we are about to consider. 

Ray et al. argue in "The Ontological Status of Autonomous Underwater Vehicle 
Fleets" that we ought to accord agent-status to the fleet of UUVs.  Because of the 
complexity of the missions undertaken by UUV fleets, there are some complex 
patterns of actions that cannot be made sense of without the postulation of the fleet 
as a single entity; that is to say, emergent behavior arises, behavior that cannot be 
reduced to the aggregate sum of collective behaviors.  Ray et al.'s discussion of ant 
colonies is illustrative: 

"...multiple agents acting collectively are 
capable of performing certain actions that 
cannot be reduced to the actions of multiple 
agents acting individually.  Examples of this 
type of emergent behavior include ant colony 
relocation and evasive herd movement.  Ant 
colonies are generally thought to behave as a 
single entity rather than as a mere aggregate 
of individuals.  This is due to the fact that 
there are certain things an ant colony, and on-
ly an ant colony, can do, e.g., relocate and 
nurture the queen ant.  In fact, there is an en-
tire class of predicates reserved for the ant co-
lony itself." (Ray et al., 2009) 

The idea here is that if we see the UUV fleet as more ontologically important than 
the individual UUVs, then the UUVs considered individually will just be a part of 
the fleet.  And if it is the case that the fleet is intentional, and the individual UUVs 
are just parts of that, it will be hard to see them as candidates for proper belief-
ascription for the same reasons we are intuitively uneasy about ascribing inten-
tional status to mere parts of ourselves. 

If we accept that we should accord ontological priority to the fleet, what rea-
sons do we have for seeing that fleet as itself an intentional agent?  This very 

                                                           
1 Excepting, of course, the part that is identical with the system as a whole. 
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question frames the discussion in Ray et al.'s "Using Collective Intentionality to 
Model Fleets of Autonomous Underwater Vehicles".  There, the claim that fleets 
should be collectively afforded intentional status is extensively defended.  Ray et 
al. characterize collective intentionality in the following way: 

"Collective intentionality is exhibited by a 
group of agents that pursues a goal as a 
group, exploiting distributed states that are 
jointly directed at the goal.  This type of inten-
tionality involves goal directed behavior that 
is irreducibly performed by the fleet itself and 
so is not simply the sum of individual vehicle 
actions.  Searching a given space and gene-
rating a map would be an example of an irre-
ducibly goal directed behavior...since it  
involves distributed processing and informa-
tion gathering.  The generation of a map is 
only possible insofar as the vehicles cooperate 
with each other and exchange information ne-
cessary for the generation of a map." (Ray et 
al., 2009) 

So, we have our objection by double syllogism.  Parts of properly intentional 
agents or systems aren't themselves properly intentional, a UUV is a part of a 
UUV fleet, and UUV fleets are properly intentional agents or systems.  Therefore, 
parts of UUV fleets aren't themselves properly intentional, and as this applies to 
UUVs (being parts of UUV fleets), UUVs are therefore not candidates for proper 
belief-ascription.  We try to meet this objection, by rejecting the initial supposition 
that parts of intentional systems or agents cannot themselves be intentional. 

We might begin by pointing out that the fact that just because many parts of us 
don't constitute properly intentional systems doesn't mean it couldn't happen in 
other cases of intentionality.  No necessary connection has been established; this 
might be an accidental feature of the way intentionality is realized in us.  Howev-
er, we would like to go farther and suggest that there are at least some parts of 
human beings properly understood on the intentional stance.  Consider the human 
immune system.  The immune system traffics in information that is not readily 
available to us as human agents in the same way that our perceptual information, 
for example, is readily available.  The immune system can be seen as representing 
information about objects it encounters in the body, and can be seen as taking spe-
cific action on the basis of that information.  Furthermore, this activity is goal  
directed, attempting to restore your body to an "equilibrium" of health.  Now it 
certainly seems right to say that one's immune system can do things that are 
beyond one's control or often even one's awareness, say, increasing blood flow to 
a particular area in the body.  It seems to make more sense to ascribe these actions 
to the immune system than it does to ascribe them to me as a conscious agent.  "I 
didn't increase the blood flow to my leg; my immune system did that!"  But clear-
ly, my immune system is a proper part of me.  So here we have a counterexample 
to the thesis that a part of an intentional system cannot itself be intentional. 
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Also, we as humans make up multi-agent systems that are themselves collec-

tively intentional.  If the notion of collective intentionality makes sense with re-
spect to an artificially constructed UUV fleet, then surely it must apply to groups 
of humans, possessed of their own individual intentionality.  Consideration of 
such groups of humans is (among other things) what gave rise to the idea of  
collective intentionality in the first place!  Football teams huddle around a quar-
terback or try to counter a blitz.  Nations war with and invade other nations.  Or-
chestras play symphonic works or accompany soloists.  If you are inclined to  
accept the idea of collective intentionality (which is required for the objection to 
go through), then certainly all these types of groups exhibit it as well, and they do 
so without threatening the individual intentional capacities of the constituent 
members.  To the contrary, it would seem the collective intentionality supervenes 
on the intentionality of the members, the state of the collective being determined 
by but not identical with the intentional states of the members. 

We should remind ourselves here that there is no contradiction in maintaining 
that systems can have beliefs without their being aware of their having these beliefs; 
we regularly hold this view with respect to many types of lesser intelligent animals.  
Self-consciousness is not a prerequisite for belief, or intentional status in general.  
Dogs know where they buried a bone in the backyard.  Bees transmit information to 
their fellows about the location of pollen sources.  Dogs and bees, then, have beliefs, 
or at least intentional states, but it is not clear that dogs are aware that they have be-
liefs; it is almost certain that bees are so unaware.  Again, we must avoid the pitfall 
of over-generalizing accidental features of our own cognitive profile. 

Finally, we should look at the role belief-ascription plays for us.  What good 
does it do for us to ascribe beliefs to others?  Why aren't we all solipsists, especial-
ly given our lack of ability to access the beliefs of others in the way we access our 
own?  The whole reason we are in the business of belief-ascription in the first 
place is so that we can accurately and economically predict behavior under differ-
ent circumstances.  If I attribute beliefs to you, it helps me to understand your be-
havior in ways that are not available without the resources of intentionality. This 
point is echoed in McCarthy's discussion of appropriate conditions for intentional-
state ascription: 

"To ascribe beliefs, free will, intentions, 
consciousness, abilities, or wants to a ma-
chine is legitimate when such an ascription 
expresses the same information about the ma-
chine that it expresses about a person. It is 
useful when the ascription helps us under-
stand the 

structure of the machine, its past or future 
behavior, or how to repair or improve it. It is 
perhaps never logically required even for hu-
mans, but expressing reasonably briefly what 
is actually known about the state of the ma-
chine in a particular situation may require 
mental qualities or qualities isomorphic to 
them." (McCarthy, 1979) 
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In this quotation, McCarthy points out that we are not even forced to ascribe inten-
tional states to other humans.  We generally do so because of what these ascrip-
tions buy us.  If this justification is sufficient to underwrite appropriate intentional 
state-ascriptions to other people, then it should be sufficient in cases of non-
human multi-agent systems as well.  Given this, even if your intuitions still pull 
you strongly in rejecting the intentionality of anything non-human, you should 
consider the ways in which your belief-ascription helps you predict behavior in 
this domain, and the ways in which it could help you predict the behavior of other 
agents and systems, should you be able to overcome your anthropocentrism. 

6   Conclusions 

We are now in a better position to see how our conclusions with respect to the 
UUVs and the UUV fleet can be generalized to other multi-agent systems.  While 
the University of Idaho's UUV fleet is concerned with performing very specialized 
"niche" tasks, almost none of the specific details of these tasks are necessary to es-
tablish our conclusions.  Rather, our conclusions are based on two general features 
of the fleet architecture that it shares in common with many other multi-agent sys-
tems.  First, that the members of the system, in the course of typical actions in 
their environment, must engage in processes which attribute intentional states to 
themselves and/or one another in order to "get the job done". In the UUV fleet, 
these processes include vehicular intercommunication and hypothetical reasoning, 
but other sorts of processes might fit the bill as well, so long as they traffic in in-
tentional states.  The second feature (which perhaps dovetails with the first) is that 
the system was designed to be an intentional system.  It is this fact which, in our 
case study, removes the possibility of rejecting the intentional stance in favor of 
the design stance, as the latter collapses into the former.  Thus, we expect that an-
yone who is convinced by the arguments we have presented with respect to our 
case study will be similarly inclined to accept parallel conclusions about other 
multi-agent systems that exhibit these two features. 

So if we are to accept that all sorts of individuals and groups of them are inten-
tional, are they all intentional in just the way that we are?  To the degree that we 
are?  In conclusion, we offer a viewpoint which, while according some non-human 
agents and systems "true believer" status, this is mitigated by a reduced richness of 
belief as complexity of the system decreases.  This is a sort of "sliding scale" ap-
proach, on which intentionality and beliefs are "thick" concepts.  That is, one can 
be intentional, or have beliefs, to a greater or lesser degree; there are many figura-
tive "shades of grey" between the black-and-white extremes of full-on belief  
having (like ours) and total lack of belief (like a stone).  The complexity of the 
system, in its sensitivity to different types of information, its ability to represent 
non-actual states of affairs, and the range of actions with which it can respond, 
will be correlated with the richness of intentionality, or the seriousness with which 
we take the ascription of belief. 

In support of this idea, let us look back one more time at our near and more dis-
tant relatives across the animal kingdom.  We might organize them into a kind of 
"cognitive hierarchy", with microbes and sea slugs near the bottom, insects a little 
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further up, lizards, birds, and eventually mammals, topping out with perhaps dol-
phins and chimpanzees (and maybe an octopus) and finally humans.  The details 
of who fits in exactly what slot may be contentious, but the idea that slugs aren't as 
smart as dogs, who aren't as smart as us, shouldn't be.  But now we have the be-
ginnings of a sort of cognitive sorites series: a gradual increasing or decreasing of 
cognitive status on a sliding scale.  Now, we may be tempted to try and draw a 
cognitive "line in the sand" somewhere, between the believers and the non-
believers.  The problem with this (as with other sorites series) is that there is no 
non-arbitrary way to decide where to draw such a line.  The best solution is to re-
ject the idea that belief is an all or nothing affair; rather, it is a matter of degree. 

So, in light of this, the recommended position is to see both UUVs and UUV 
fleets (and, correspondingly, many multi-agent systems) as legitimately intentional 
or collectively intentional agents or systems, respectively.  However, given our in-
creased complexity and nuance of informational and behavioral modulation, we 
humans believe "more richly" than any artificial agents are currently able to.  This 
is a win-win; humans retain an elevated status as the richest and most intentional 
believers (at least for the time being), and UUVs, UUV fleets, and other non-
human agents in multi-agent systems are accorded status as real, legitimate believ-
ers, albeit in their proportionally reduced degree. 
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Snapshots of Sensorimotor Perception: Putting 
the Body Back into Embodiment 

Anthony F. Morse* 

Abstract. Sensorimotor theories of perception are highly appealing to A.I. due to 
their apparent simplicity and power; however, they are not problem free either. 
This paper will presents a frank appraisal of sensorimotor perception discussing 
and highlighting the good, the bad, and the ugly with respect to a potential 
sensorimotor A.I. 

1   Introduction 1: Sensorimotor Perception and A.I. 

For Noë [1-3], the central claim of the enactive approach is that conscious 
perception is constituted by our possession of sensorimotor knowledge, “implicit 
practical knowledge of the ways movement gives rise to changes in stimulation.” 
[2] p.8.  That is to say; we predict or anticipate the sensory consequences of our 
potential actions, and in doing so we bring fourth our perception of the world.  
For O'Regan [4] differences in the sensorimotor contingencies of different 
modalities of interaction provides a compelling account of feeling; red does not 
sound like a bell precisely because is it constituted in the visual domain being 
subject to various visual manipulations and not to auditory ones. The same is true 
of TVSS [5, 6] where for experienced users the feel is one of a visual experience, 
despite using a touch interface rather than the human eye. In part this would seems 
to be about interfaces, as Clark highlights [7], even for a sighted person (with their 
eyes closed) using a blind stick, the focus of attention is on the end of the stick and 
not on the interface between the stick and hand. This change in focus is an 
extension of cognition precisely because it brings about new perceptions. We 
argue that to do this requires a particular kind of knowledge, here referred to as 
deep knowledge of sensorimotor contingencies. This is to be contrasted with 
shallow knowledge of sensorimotor contingencies, for example; that the visual 
flow field moves as one turns ones head.  While shallow knowledge may be 
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sufficient to bring forth some kinds of feelings (an of experience of sensation), 
perception of a world requires perception of things constituting that world. Here 
sensoirmotor theories draw upon Gibson’s [8] notion of object affordances; that a 
chair affords us something to sit upon, that a ladder affords us an opportunity to 
climb, that a car affords driving and so on.  Rather than affordances simply 
presenting themselves to an agent, sensorimotor perception attempts to account for 
how one could come to recognize affordances and thereby come to perceive the 
objects behind them.  Thus deep knowledge of sensorimotor contingencies 
requires the identification of profiles of interaction for example; to perceive 
something as round does not require that it presents a circular pattern of 
stimulation from this particular viewpoint, but rather that during our ongoing 
engagement over time, as we move a little this way or a little that way, sensory 
stimulation from the object changes in a manner consistent with round things.  
Thus for a thing to be perceived as round requires interaction to be consistent with 
a particular profile of sensorimotor interactions, how we expect round things to 
look and act.  Similarly, to be red is to be consistent with the profile of 
reflectance of red things [9],  to be a chair, though more complex, is to be 
consistent with a profile of interaction typical of chairs, which includes the 
affordance of sitting as a sensory expectation should particular sequences of 
actions be performed.  Deep knowledge of sensorimotor contingencies is 
constituted by recognition of these profiles, and thereby enables the perception of 
a world beyond mere sensation.  To recognise a particular contingency is to 
recognise an affordance, to recognise a profile of contingencies is to enact an 
object or thing behind the affordance.  To summarise Noë’s position, you 
perceive objects only because you have expectations of the interactive potential 
they afford you, without this deep sensorimotor knowledge you can perceive only 
sensation, and without any sensorimotor knowledge (at least for Noe [2]) you can 
perceive nothing at all. 

At the heart of sensorimotor perception is the idea that perception is to some 
large extent based upon predictions of the future sensory consequences of various 
potential actions. This simple idea has far-reaching and appealing implications for 
A.I. Perhaps the first and most obvious implication is that nothing special has been 
said about vision, or auditory processing, or any other modality, and so specialized 
methods for this or that modality or domain are not required, the same method is 
used whatever the form of information / activity / data happens to be. While this is 
not exactly consistent with the more mainstream modular view of neuroscience, 
many neuroscientists advocate similar views highlighting the interaction between 
motor and sensory areas e.g. [10-12], and the importance of prediction in 
cognition e.g. [13].  

The move from, predicting how head movements change visual sensory contact 
with objects, (for example identifying the profile of a round object) to predictions 
of more complex actions, would seem intuitively to result in the perception of 
affordances. In fact on a sensorimotor account our perception of the world and 
things in it is very much affordance based. In contrast to traditional theories of 
concept acquisition which require additional machinery / mechanisms to make use 
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of concepts, senorimotor perceptions tell you exactly how to interact with the 
world, to perceive a chair is to know how to interact with it. So potentially little if 
any additional mechanisms are required to make use of the resulting concepts. 
Sensorimotor perception then is clearly a theory of cognition as opposed to one of 
minimal cognition or mere concept formation but can it be made to work for A.I.? 

For non-symbolic approaches to A.I. learning to predict the sensory 
consequences of an agents own actions is appealing as all the information required 
is readily available simply by comparing the predictions made to the actual 
outcome of an action. So making agents that learn to predict, thereby gaining 
sensorimotor knowledge, is a relatively simple task. However using this 
knowledge to understand affordances would seem to invoke a form of the Frame 
Problem. Put simply one must set out to perform a number of simulated actions, 
the results of which will reveal the profile of interactivity (or affordances) of the 
currently unknown object in front of you; however, which of the infinite possible 
actions one could simulate will actually reveal the objects identity. The frame 
problem is a biggie; theories that succumb to it rarely survive, but here new and 
highly suggestive data from neuropsychology may provide a surprising way out of 
the problem. The surprising aspect is that to survive sensorimotor perception may 
have to embrace precisely the kind of theory that it purports to be in opposition to, 
i.e. the snapshot hypothesis.  

From the outset Noe’s discussion of sensorimotor perception [2] has been 
portrayed in opposition to the snapshot hypothesis in which static visual scenes are 
analysed in detail to reveal visual features (lines, orientations, edges, gradients, 
shapes, etc…) to reveal the identity of the objects in that scene. And yet we have a 
schism in that while the biology of the visual cortex somewhat supports the 
snapshot hypothesis, the psychology and phenomenology of our experience 
clearly falls on the side of sensorimotor perception. New data from 
neuropsychology however suggests that early visual processing primes simple 
motor plans which in turn prime higher areas of the visual cortex [14]. The result 
would seem to support a hybrid sensorimotor-snap-shot theory in which initially 
low level features are identified from visual or other modalities (such as grasp 
points) leading to simple motor plans. These motor plans then serve to prime or 
focus the extraction of further more complex features resulting in more complex 
simulations and so on. Following such an iterative method the frame problem can 
be avoided and useful approaches for A.I. can be developed e.g. [15-17]. The 
context of perception is however equally important in both avoiding the frame 
problem and tackling a more challenging problem, that of goal directed behaviour. 
To this end we highlight the interaction between sensorimotor perception and 
enactive theory. 

2   Introduction 2: The Organization of Life 

Thompson et al’s [18, 19] depiction of the enactive approach is focused on the 
organization of living systems.  More specifically autopoietic systems [20], such 
as living cells, which are organised so that the ‘parts’ of the system form an 
interdependent network being both cause and effect of one another in such a way 
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as to form a bounded unity in space.  Such organizational closure does not scale 
up to multi-cellular organisms; however, a close relative of autopoiesis, often 
termed second-order autopoiesis or operational closure, describes the dynamic 
interdependence of parts of multi-cellular organic systems.  The different 
emphasis between sensorimotor and organization has resulted in theories that are 
independent and can be held without any commitment to the opposing view, they 
do however complement each other, one aspect of which is the subject of this 
paper.  For the sensorimotor theorist, one reason to consider aspects of the 
organizational view is that it claims to provide a route to normativity, that 
something can be objectively good or bad for an agent [21], an essential capacity 
for percieveing and acting in goal directed ways.  As with autopoietic systems, 
operationally closed systems are intrinsically organized to self perpetuate through 
continual reconstitution of their parts, thus the teleological purpose of these 
systems is intrinsically defined by their organization.  Intrinsic teleology leads to 
normativity, though as we shall discuss later, without adaptivity this normativity is 
binary in that something either destroys the system (in terms of its continued 
organizational closure) in which case it is bad, or it doesn’t in which case it was 
not bad.  Unlike mere sensorimotor agents, operationally closed systems are 
concerned with their continuation; by definition their organization is such as to 
perpetually reconstitute their parts through selectively taking in needed physical 
matter and energy and expelling waste.  This provides an organizationally 
grounded notion of normativity in that events, encounters, situations, and stuff can 
be ‘good’ or ‘bad’ for the system with respect to its continued operational closure. 
For the general goals of A.I. operational closure would not seem necessary but 
understanding how things can be good or bad for an agent highlights the role that 
body plays in embodiement. That is to say while sensorimotor perception is 
focused on the effect of bodily action on the environment, enaction is focused on 
the effect of environment on body. By combining the two together we can focus 
on the effect of actions on the environment and their bodily consequences. 

Stressing the interdependence of parts of an operationally closed system 
indirectly supports the idea that emotion, as with any other part of mind or body, 
is also interdependent rather than independently modular.  The importance of this 
for what is to follow is to stress the point that a mind or cognition without emotion 
is not just lacking a part or aspect of its functioning, but rather that it simply is not 
a mind or cognitive process. From this perspective O’Regan’s definition of feeling 
[4] can be extended to account for the feeling of emotions and the emotional 
aspects of perceptions of the world. 

Mind, cognition, reason, thought, and emotion are all intertwined and necessary 
parts of each other.  As Varela and Depraz [22] note, “emotions cannot be seen as 
mere ‘coloration’ of the cognitive agent, understood as a formal or un-affected 
self, but are immanent and inextricable from every mental act.” p. 61 [22].  

3   Putting the Body Back into Embodiment 

As intuitively appealing as the sensorimotor enactive approach may be, a 
significant aspect of conscious perception and awareness is notably absent from 
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Noë’s account; the perception of our own emotional and bodily states and how 
they influence and change our perception of the world.  It is this omission that we 
suggest can be remedied by bringing together aspects of the two enactive 
positions.  We perceive not only “…an idiom of possibilities for movement” [2] 
p.105, but a world with an affective component significant for our well-being.  
This affective or emotional component of our awareness is not simply an add-on 
to the contents of perception as sensorimotor knowledge, we are not arguing for 
the tagging of perceptual contents with a ‘good’ or ‘bad’ label, rather emotion and 
affect are as important as action in shaping and constituting our perceptual 
awareness.  What we argue is missing from Noë’s account is the role of the body 
and its reactions to internal and external events.  By incorporating these missing 
features into the sensorimotor enactive approach perception is not just extended to 
include perception of emotion, but is transformed to bring fourth perception of a 
world with meaning.  Following the title of Noë’s book, action in perception, we 
can characterise our proposition as the role of action and bodily reaction in 
constituting perception.  Without proper inclusion of the body in any theory of 
perception, there can be no physically grounded notion of well-being.  To some 
degree following Thompson et al [18, 19], for any event to have valence it must 
impact the physical or dynamic continuation of the agent for which it has that 
meaning.  In fact that impact is precisely its meaning.  Without an impact, direct 
or indirect, no matter how convoluted, events, and the objects affording those 
events, are completely neutral. 

While Noë, in contrast to traditional notions of representational content (e.g. 
[23]), presents an agent relative version of the contents of perception, this is only 
relative to the actions of the agent and not to the ongoing survival, well being, or 
more crucially for A.I. the goals of that agent.  The result is to characterise 
perception as valueless , thus while the agent can perceive objects and predict the 
consequences of its actions relative to those objects, it has no preference or 
emotional reaction to that awareness.  On the other hand, Thompson’s 
interpretation of the enactive approach stresses the importance of bodily regulation 
and homeostasis but defaults to Noë’s sensorimotor account of conscious 
perception and awareness (see [18] chapter 12).  To properly incorporate the two 
perspectives together an agent’s perception must be relative to its well being and 
continued survival, which entails sensitivity to both body and action, and in turn 
entails sensitivity to the bodily impact of an event. We will now examine the 
consequences of such a sensitivity being incorporated into the sensorimotor 
enactive approach. 

4   Body in Mind 

In emphasising the role of the body as more than a mere puppet to the 
sensorimotor enacted mind, we can extend our notion of sensorimotor knowledge 
beyond knowledge of exteroceptive-sensorimotor contingencies and incorporate 
interoceptive-sensorimotor knowledge.  That is to include patterns of contingency 
between the sensed or neurally affected internal nervous system [24], regulatory, 
homeostatic, and metabolic mechanisms and their affecters [18, 19, 25-28], and 
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the exteroceptive-sensorimotor events [1-3].  This simple step extends the 
sensorimotor account to incorporate bodily systems with several consequences for 
Noë’s account of perception:  Firstly, just as our perceiving a plate is to recognize 
that some part of our sensory input corresponds to a sensorimotor profile typical of 
plates, perceiving an emotional / motivational / bodily state is to recognize that some 
part of ones somatic input corresponds to a sensorimotor profile typical of that 
emotional / motivational / bodily state [29].   Secondly, this somatic-sensorimotor1 
knowledge then becomes not only “implicit practical knowledge of the ways 
movement gives rise to changes in stimulation” p. 8 [2], but also knowledge of the 
ways movement and stimulation give rise to changes in somatic state.  And 
finally, perception of the world is not merely brought fourth as content full but 
also as relevant to the continuation or well being of our embodiment.  Each of 
these consequences is now discussed in more detail. 

4.1   Perceiving an Emotion 

According to Damasio’s embodied theory of emotion [26, 27], following a nesting 
principle, some of the machinery of reflexes, immune responses, metabolic 
balancing, pain or pleasure behaviours, drives etc. “is incorporated in the 
machinery of the emotions proper.” p.38 [27].  For Damasio then, emotion is 
inherently bound up with homeostatic regulation at all levels and so, by extending 
sensorimotor perception, the perception of emotion is constituted by somatic-
sensorimotor knowledge of the contingencies between bodily regulation, motor 
action, and sensory stimulation. Similarly the different feelings of emotional 
responces can be understood in terms of their different bodily contingencies. 
Following Thompson; “sensorimotor processes modulate, but do not determine, an 
ongoing endogenous activity, which in turn infuses sensorimotor activity with 
emotional meaning and value for the organism.” p. 370 [18].  Therefore one 
effect of extending the sensorimotor enactive approach to incorporate internal 
sensing and acting is to account for the perception of our own emotional state as a 
profile of the states of our own regulatory systems, or rather as a profile of our 
bodily well-being and current needs.  In biological organisms it has been argued 
that all behaviour, cognition, appraisal, and perception is constituted in emotion, 
affect or valence, e.g. Varela and Depraz [22].  Though sensorimotor knowledge 
is not ‘for’ the guiding of actions, recognising the profiles and relationships 
between; dispositions toward external actions, internal states, and bodily needs 
suggests perception not of content but of motivational bias, of bodily state, of 
mood, and of emotion.  Freeman [30], in a similar vein,  refers to emotion as 
being “action that wells up from within the organism… directed toward some 
future state” p. 214 [30], where here that future state is the continuation of 
operational closure through the re-assertion of homeostatic balance.   

Somatic state emotion theorists [26, 27, 31-33] tend to emphasize the 
importance of action preparedness and dispositions as a function of emotion that 

                                                           
1 Somatic-sensorimotor knowledge is not intended to refer to a sub-set of sensorimotor but 

rather a definition of sensorimotor that includes wide ranging somatic information. 



Snapshots of Sensorimotor Perception: Putting the Body Back into Embodiment 243
 

can be identified in various areas of the brain (e.g. somatosensory cortex and 
insula), biasing subsequent perception and appraisal of ongoing events.   Emotion 
in fact may be seen as a form of motivated disposition to act.  Perception of 
emotion then is constituted by deep sensorimotor knowledge of the relationship 
between somatic state and these dispositions to act. Such perceptions would seem 
to provide the required motivation behind the cognitive behaviour of both animals 
and A.I. agents. 

4.2   Perceiving the Bodily Consequences of Actions 

Following the perception of emotion as recognition of profiles of dispositions to 
act, the idiom of possibilities for movement that we perceive through 
exteroceptive sensorimotor knowledge also becomes somatically marked in the 
terms of Domasio’s somatic marker hypothesis [28].  That is to say actions 
provide expectations not just of their consequences to future external sensory 
input but also to the balance of internal regulation and homeostasis, at least with 
respect to future internal sensory input.  Somatically marking actions provides a 
necessary precursor to appraisal, influencing the salience of this multitude of 
possibilities in a manner both grounded and relevant to our survival and well 
being both generally, and right now, as an operationally closed entity.  This has 
implications for problems in Artificial Intelligence such as the frame problem [34, 
35] which entails a combinatorial explosion of potential actions for evaluation, a 
multitude of possibilities.  Following appraisal theories, nature’s solution would 
seem to reduce this multitude via appraisal implicitly affecting the salience of 
actions to be considered in light of their somatic markers.  While not in itself a 
complete solution to the frame problem, in combination with a low-level version 
of the snap-shot-hypothesis previously outlined a workable solution seems 
possible. 

4.3   Perceiving a World with Meaning 

Somatic-sensorimotor knowledge does not simply allow us to perceive our own 
emotional states but further alters our perception of the world around us, partly by 
altering the salience of actions for consideration, but more importantly by doing so 
with respect to the enacted external world.  Thus by introducing bodily concerns 
into the sensorimotor enactive approach we have a means to recognise the real 
affordances, to our bodily wellbeing, of the world around us and thereby to 
perceive objects with value and a world with meaning.  We perceive not that a 
chair affords a place to sit, but that it affords a place to rest; or while reaching, not 
that it gains us height but that it helps us reach a goal; or while threatened, not its 
defensive or offensive capacity but its potential to aid in our survival.  This is 
perception of a world of objects that mean something to us, and it is constituted 
not just by the relationship between action and sensing but by the three way 
relationship between our somatic states, our actions, and our sensing.  The 
sensorimotor enactive approach gives us a partial account of the content of 
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perception; however with the added meaning gained by incorporating somatic 
concerns, we have a richer conception of perception that incorporates valence and 
emotion. 

5   Perceiving an Action 

We now turn to the problem of perceiving an action.  What is an action?  Clearly 
there is a gap between the kind of outwardly directed actions sensorimotor 
theories discuss, and muscular movements, the former being constituted by a 
concerto of the later in context [36].  An object directed reach, for example, can 
use radically different muscles depending on the relative location of the reached 
for object. The gap between motor behaviour and action then is a big problem for 
any sensorimotor based A.I. Thus any account of action must incorporate the body 
in yet another way, not as somatic state but as a dynamical system.  The various 
muscular movements that allow you to raise your arm while seated and relaxed 
would surely have radically different consequences if performed while your body 
is engaged in running for example, or while falling.  The human body has its own 
passive dynamics and commanding that body is not a matter of telling this bit or 
that bit where to go but rather of nudging and manipulating its natural movements 
so as to achieve the desired result [37].  This provides yet another complication to 
the sensorimotor enactive story in that when my brain sends any particular set of 
muscular movement commands the result will be very much dependant on the 
current dynamic trajectory of my body.  Here proprioception and muscular 
stimulation can replace the standard conception of sensory input and motor output 
from the sensorimotor enactive approach.  Gaining knowledge of these basic 
contingencies is necessary to perceive an action as an action, and a necessary 
precursor to deep sensorimotor knowledge.  Such perception scaffolds itself, as 
knowledge of actions, constituted by sensorimotor knowledge, can partake in the 
construction of deeper sensorimotor knowledge.  Similar use of existing 
sensorimotor knowledge in scaffolding further sensorimotor knowledge surely lies 
behind higher cognitive capacities such as reasoning and abstraction as we 
perceive the contingencies between contingencies and ultimately the objects, 
events and relationships behind them. At the most basic level then, sensorimotor 
A.I. would seem to require an interpretation system between actions and motor 
systems. 

6   Somatic-Sensorimotor Perception 

In a nutshell, biological / organic / organismic / homeostatic embodiment entails a 
boundary of viability which can be characterized as a region of state space 
remaining within which the agent continues to function.  As Di Paolo points out 
[21], crossing this boundary results in the death or disintegration of the system and 
so is an event the agent cannot learn from.  Therefore adaptivity must be biased 
toward avoiding this boundary of viability; anything else would be at an 
evolutionary disadvantage.  To this end adaptation in action selection should 
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minimize the effort required to reassert homeostatic norms rather than measure the 
deviation from some ideal.  Knowledge of the effort required to reassert some 
homeostatic norm implies somatic-sensorimotor knowledge, that is to say, 
knowledge of which deviations may be more easily accommodated than others.  
Thus agents sensitive to the states of some of the machinery of reflexes, immune 
responses, metabolic balancing, pain or pleasure behaviours, drives etc. have 
necessary precursors to perceiving the relationships between movements actions or 
manipulations presenting contingencies with the states of their regulatory systems.  
In context with actions and / or external sensory events these contingencies will 
form part of the agents perception (conscious or not) of the world.  Dangerous 
things will be perceived as such, they will elicit highly salient reactions, a 
preparedness for action, and a disposition for avoidance.  Of course such ‘gut 
reactions’ can sometimes be overcome by rational consideration, exposure leading 
to familiarity (e.g. systematic desensitization) or learning new somatic-
sensorimotor contingencies. Somatic-sensorimotor knowledge somatically marks 
perceptions with their effect or importance in terms of movement not only in 
physical space, but also toward, away from, or crossing a boundary of viability, 
(whether an action will further disrupt, stabilize, or destroy some homeostatic 
dynamic) thereby critically affecting the saliency and quality of our perceptions.  
Thus we perceive a world of dangers and rewards; a world of somatic importance 
to us now rather than the world of trivial detail that composes the frame problem. 

7   The Relationship between Internal and External Perception 

The relationship between internal and external perception is complex, on the one 
hand internal perception suggests an awareness of mood or emotional states as 
well as bodily needs such as hunger or thirst.  As discussed, emotion is not simply 
about internal bodily states but is also about profiles of behavioural biases.  To 
view the somatic-sensorimotor relationship, as sense-motor dualistic conceals this 
interaction between the internal and external; instead it is useful to view this 
relationship as having 3 elements in interaction.  Those elements being; extero-
sensory input, intero or somatic input, and motor actions.  One could question the 
use of a single motor element in this scenario rather than two separate, one 
internally and one externally directed motor system; however, action requires 
manipulation of both; for example, to stimulate a muscle to lift your arm, requires 
not just muscular manipulation but a mobilization of energy, a quickening of the 
heart rate and so on. 

The inclusion of somatic information, via the internal nervous system and other 
neurally influential substances (e.g. via hormonal signaling or metabolic 
variation), develops Noë’s emphasis on the relation between sensory input and 
motor output.  Now the relationship can be viewed as three fold (see Figure 1) 
being between sensory and motor as before, but now also between sensory and 
somatic (the extero-intero sensory relationship), and between somatic and motor, 
where each relationship between two of the elements occurs in the context of the  
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Fig. 1 The relations between somatic input, sensory input, and motor action.  The 
relationship between any two must take into account the context provided by the third. 

 
 

third.  That is to say the salience or importance of sensorimotor relationships can 
vary with somatic state; for example, orienting toward peripheral movements is far 
more likely in fearful or high adrenalin states, food smells elicit different reactions 
and have different meaning when you are hungry and so on.  Equally the somatic 
impact of a sensory event will depend on engagement in motor actions; for 
example, a fast approaching object may lead to anticipation of pain when resting; 
however, while playing football the expectations are quite different.  Finally, 
somatic-motor relationships also vary with sensory exposure; for example, the 
increased heart rate following a sudden loud noise.   To re-iterate, motor action is 
intended to indicate not only externally directed muscular activity but also 
glandular hormone production, energy mobilization, and other internally directed 
action. 

7.1   The Importance of Context 

As noted in the previous section, relationships occur in context and that context 
can significantly alter the salience or meaning of that relationship.  For example, 
when tired one can perceive a chair as affording a place to sit and rest, when 
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trying to reach the top shelf our perception of the chair is as affording something 
to stand upon, gaining height and achieving a goal, when being attacked the chair 
may even afford defensive or offensive capacities aiding our survival.  These are 
context dependant perceptions, on seeing a chair we would not normally perceive 
its defensive and offensive affordances yet somatic-sensorimotor knowledge of 
these relationships is always there it’s just that the impact on our awareness is 
mediated by context.  Without bodily / somatic information it is not at all clear 
how such context can be influential to perception. 

Noë’s emphasis on sensorimotor knowledge explains part of the content of our 
perceptions but this content is entirely neutral lacking valence of any kind.  In 
contrast somatic-sensorimotor knowledge incorporates valence as knowledge of 
the effort required to maintain or re-assert homeostatic regulatory norms.  Di 
Paolo [21] highlights the need for this kind of adaptivity in sense-making as the 
normativity implied by intrinsic teleology alone is binary, something either kills 
you and is therefore bad for you, or it doesn’t in which case it is not bad for you.  
With the inclusion of adaptivity an event can be more or less bad depending on the 
effort required to re-assert homeostatic norms without actually killing you.  An 
event could even be good for you, in as much as it aids the re-assertion of 
homeostatic balance.  Somatic-sensorimotor knowledge then provides exactly this 
kind of graded valence to the contents of perception.  However, rather than being 
at the level of biology and minimal cognition [18, 19, 21, 24], Noë’s enactive 
approach provides a theory at the level of psychology, at the level of a cognitive 
agency bringing forth a world.  For a behaviourally adaptive agent such value 
laden knowledge is a necessary resource for action selection and decision making 
[38], but as we have argued here this is also a necessary part of the explanation of 
perception, not as an add on but as an intrinsic interdependent component of 
perception.   

While the sensorimotor enactive approach [1-3], in general emphasizes the 
inextricability of patterns of activity between motors and sensors, emotion or more 
generally affect as a mechanism of bioregulation (tracker of homeostatic 
perturbations) is a means of providing adaptivity or sense-making [21] to agent 
responses, which includes perception. The tracking of internal perturbations that 
may disrupt the homeostatic internal milieu is intrinsically meaningful to the agent 
[18, 19, 22] and can allow for adaptive responses.  The interplay between these 
internal bioregulatory mechanisms and sensory motor dynamics gives rise to what 
Barandiaran and Moreno term adaptive autonomy [18, 22, 24].  Adaptivity and 
sense-making engendered through ‘enactive emotions’ is conspicuously absent in 
Noë’s account of action in perception.  However for Thompson, “in perceiving 
we exercise our skillful mastery of sensorimotor contingencies – how sensory 
stimulation varies as a result of movement.  This approach to perception focuses 
on the global sensorimotor loop of organism and environment… this loop contains 
numerous neural and somatic loops, whose beating heart (in mammals) is the 
endogenous, self-organizing dynamics of cortical and subcortical brain areas.”  
p. 370 [18]. 
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8   Discussion and Conclusion 

For A.I. sensorimotor perception provides a perspective on cognition which is 
both appealing and problematic. The initial assertion that prediction (sensorimotor 
knowledge) is the basis of perception would seem highly appealing to non-
symbolic variants of A.I., and is suggestive of a route to affordance learning, but 
there are gaps here. Firstly deciding which actions to simulate is not 
straightforward and secondly an agents motivation must be considered. In support 
of sensorimotor A.I. however, such perception of the world is in itself action 
leading. The extent of this is unknown but we may ultimately find that our own 
cognition is more the narrative that we tell ourselves after the fact, than genuine 
reasoning. That said clear instances of reasoning would seem to require at least 
some additional mechanism beyond those of somatic-sensorimotor perception. 
The meaning of, or value to, perception can be understood by incorporating 
somatic information of the kind central to the organizational enactive approach 
[18, 19].  While this does not significantly change the form of sensorimotor 
theories, it has far reaching consequences to accounts for emotion as an 
interdependent and essential part of perception.  In terms of bodily needs and 
maintaining operational closure, perception of the world becomes meaningful in a 
way conducive to sense-making, motivation and goal directedness.  Even the 
body’s own passive dynamics have a role to play in the shaping of perceptual 
awareness. So while A.I. can gain from taking a sensorimotor perspective, many 
questions remain as to how these systems can actually be implemented. Some first 
steps towards such an implementation are evident in the ERA architecture [17] but 
many more steps remain. 
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Feasibility of Whole Brain Emulation 

Anders Sandberg* 

1   Introduction 

Whole brain emulation (WBE) is the possible future one-to-one modeling of the 
function of the entire (human) brain. The basic idea is to take a particular brain, 
scan its structure in detail, and construct a software model of it that is so faithful to 
the original that, when run on appropriate hardware, it will behave in essentially 
the same way as the original brain. This would achieve software-based intelli-
gence by copying biological intelligence (without necessarily understanding it). 

WBE has been a staple of science fiction and philosophical thought experi-
ments for a long time, from the early futurist visions of  (Bernal, 1929) to (Parfit, 
1984)(Chalmers, 1995)(Searle, 1980). While the philosophical literature has ex-
plored the possibility as a tool for elucidating theories of identity and mind, it has 
not overly concerned itself with the issue of whether it could actually be achieved 
technologically.  

The first attempt at a technical analysis of brain emulation was a report  
(Merkle, 1989) reviewing automated analysis and reconstruction methods for 
brains. It predicted that “a complete analysis of the cellular connectivity of a struc-
ture as large as the human brain is only a few decades away”. The first populariza-
tion of a technical description of a possible mind emulation scenario can be found 
in (Moravec, 1988), where the author describes the gradual neuron‐by‐neuron re-
placement of a (conscious) brain with software. Since then a number of reports 
have attempted to analyse the technical requirements and constraints of WBE   
(e.g. (Sandberg & Bostrom, 2008) and (Parker, Friesz, & Pakdaman, 2006)), 
several projects aimed at large scale scanning and reconstruction have been started 
(Blue Brain, the Human Connectome Project, brainpreservation.org) and there is 
also a renewed philosophical interest in the possible impact of software intelli-
gence (Chalmers, 2010) 
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WBE is interesting for several reasons: 

• It is the logical endpoint of computational neuroscience's attempts to accurately 
model neurons and brain systems, and the emergent dynamics that occur in 
such models. Neuroinformatics, like other areas of bioinformatics, aims at  
documenting maps as complete as possible of biological systems at different 
levels of resolution. WBE would be a combination of an accurate map and suf-
ficiently accurate modeling.  

• WBE might produce useful data or inspiration for AI even if the full aim is 
never realized. 

• WBE might lead to AI and possible superintelligence through mental enhance-
ment  (Chalmers, 2010). 

• Attempts at brain emulation would itself be a test of ideas in the philosophy of 
mind and philosophy of identity  (Shores, 2011).  

• The impact of successful WBE could be immense. Given that human capital is 
a main driver of economic growth, copyable human capital (in the sense of sys-
tems able to perform the same tasks as a human) implies extremely fast eco-
nomic growth, and would have profound societal and ethical consequences  
(Hanson, 1994) (Hanson, 2008). Even low probability events of such magni-
tude merit investigation, especially if early coordination is necessary to avoid 
disastrous outcomes. 

WBE represents a formidable engineering and research problem, yet one that ap-
pears to have a well-defined goal and could, it would seem, be achieved by extra-
polations of current technology. This is unlike many other approaches to artificial 
intelligence where we do not have any clear metric of how far we are from  
success. 

Arguments of incredulity are not sufficient to disprove WBE – the complexity 
of the brain might be high, but there are many of examples where people have 
scanned or simulated very complex systems (genomes, proteins, integrated cir-
cuits) that would have appeared infeasible just a few years earlier. We cannot trust 
intuitions formed in scientific and technological environments different from the 
environment where the eventual development will take place. 

Still, the existence of simple prototypes today does not constitute a proof of 
eventual success; the way to avoid the “first step fallacy” (Dreyfus, 1992) is to 
look at the constraints of the process and preconditions that might imply its even-
tual infeasibility. This paper will explore the feasibility of WBE, investigating 
what preconditions - philosophical, scientific and technological - are necessary for 
various degrees of success and the extent they can be estimated given our current 
state of knowledge. 

1.1   Simulations and Emulations 

Simulations are processes that mimic the relevant features of target processes  
(Hartmann, 1996). A computer simulation is an attempt to model a particular sys-
tem by creating a software representation that represents objects, relations and  
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dynamics of the system in such a way that relations between objects in the  
simulation map onto relations between equivalence classes of objects in the origi-
nal system.  

Simulations can be of different levels of resolution. For the current paper we 
will focus on simulations that attempts to achieve full functional equivalence – all 
relevant behavioral properties and internal causal links of the original system are 
replicated. Exactly what this requirement entails depends on both the success cri-
terion used by human researchers (the goal aimed for) and the corresponding ne-
cessary resolution scale in the brain.  

A key issue in simulation science is validation, testing that the real and simu-
lated systems correspond to each other. There are three types of validity (Zeigler, 
1985) (Zeigler, Praehofer, & Kim, 2000):  

• Replicative validity: the simulation matches already observed data from the real 
system (retrodiction) 

• Predictive validity: the simulation matches data before they are acquired from 
the real system (prediction) 

• Structural validity: the simulation “not only reproduces the observed real sys-
tem behavior, but truly reflects the way in which the real system operates to 
produce this behavior.”  (Zeigler, 1985) In this case the map between the real 
system and the simulation is a homomorphism: all relationships between ele-
ments in the real system have corresponding relationships in the simulated  
system. 

Given that scanning methods of brains are very likely to be destructive (Appendix 
E of (Sandberg & Bostrom, 2008)) predictive validity in the simple sense might be 
impossible. Conversely, by the definition of WBE structural validity is a necessary 
condition for success. However, this is not directly observable: we cannot know 
that all parts are included, merely that the replicative validity is good.  

1.1.1   Emulations 

In software engineering the term emulator is used for hardware and/or software 
that duplicate the functions of a computer system in another computer system.  
Typically the focus is on exact reproduction of external behavior rather than the 
exact internal structure. Internal states need to change as a function of inputs, pro-
ducing outputs compatible with the modeled system but the states are not neces-
sarily corresponding to any components of the system. 

Many emulation are used to run software from older computers on newer com-
puters; here the emulation of the old hardware and operating system underlying 
the software layer allows the execution of the software to be simulated in a one-to-
one manner. Emulation in this sense is something enabling an accurate or one-to-
one simulation by providing a sufficiently accurate interface that imitates low-
level functions that are not relevant to the simulation1.  

                                                           
1 It should be noted that the use of emulation here diverges slightly from the usage in 

(Sandberg & Bostrom, 2008); there it denotes structurally valid simulation, while here it 
denotes a platform that enables a structurally valid simulation.  
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An impressive example of such emulation is the reconstruction and emulation 
of the MOS 6502 processor by the Visual6502.org project. Unlike normal emula-
tor construction based on implementing the description in chip specification doc-
uments this project scanned and interpreted a physical instance of the processor. 
Working from a single chip they exposed the silicon die, photographed its surface 
and substrate at high resolution, generated polygon models of the individual com-
ponents, used the known rules for how they intersect to form circuits to automati-
cally deduce the circuit diagram and hence produce a transistor-level simulation of 
the chip.  

The reason for the physical scanning was that available design information 
tends to be incomplete or incorrect and manual reconstruction from the actual chip 
is not feasible for complex chips (Visual Transistor-level Simulation of the 6502 
CPU, 2011). In this regard the project has many similarities to a hypothetical 
WBE project, although of course it was helped by the fact that the chip has a well-
defined structure, perfectly understood components and merely 3,510 transistors.  

This simulation is capable of running any programs the original processor 
could, not just emulating the response to instructions but the actual logic. It leaves 
out resistance and capacitance, has no propagation delays and makes use of some 
simple heuristics to handle analog behavior of transistors (James, Silverman, & 
Silverman, 2010). There is no need to perform an electrical simulation of the 
components (or hardware in the second case) since the digital nature of the system 
allows a sharp abstraction boundary where higher level layers do not depend on 
the details of lower levels. As we will see, the issue of whether sharp abstraction 
boundaries exist in the brain is of key importance for the feasibility of brain  
emulation. 

2   Philosophical Feasibility 

2.1   Philosophy of Mind: Physicalism, Functionalism 

WBE assumes that everything that matters in brains supervenes on the physical. 
The major difference to AI is that WBE does not only require physicalism, but 
that all relevant properties are in principle observable. If mental supervenience re-
quires properties that can never be observed for some reason, then WBE would 
not be feasible while strong AI might still be achievable. The functional relations 
between the properties might be unobservable, preventing the construction of 
brain emulations in general, or individual properties of importance might be unob-
servable so that while emulations are possible gaining the necessary data to make 
an emulation of a particular brain will remain out of reach.  

WBE makes roughly similar assumptions as strong AI about the philosophy of 
mind when it comes to the machine implementation of intelligent behavior, at 
least in the wider sense of the term “strong AI” as systems that act like they have 
minds rather than the more precise original sense in (Searle, 1980) – some success 
criteria for WBE do not require a mind emulation, merely appropriate behavior. 
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WBE is also committed to functionalism, since it assumes that by copying the 
functional relationships of a brain the relevant properties are copied or will emerge 
from their execution. A successful WBE project implies multiple realizability 
since the software could be copied to multiple hardware platforms.  

As noted by (Shores, 2011), WBE might act as a test for theories of downward 
causation or holism of minds: while WBE assumes an emergent mind, it assumes 
a particular form of emergence from simple components that might not be com-
patible with other theories of emergence. 

2.2   Can Meaningful Degrees of Success Be Defined and 
Observed? 

The degree to which simulations are judged successful in science depends on how 
well a simulation achieves the desired function of the simulation in the scientific 
process. This does not have to correspond to a close match of behavior if the goal 
is to inspire experiments, or act as pedagogical or heuristic tools. Simulations used 
as substitute for experiments on the other hand will be judged as more successful 
the closer their results match their counterpart real experiments, at least along the 
dimensions the experiment aims to measure.  

However, WBE can aim at something different from improving scientific un-
derstanding. It can also be an engineering goal, where it is the usable result that 
matters. A working simulation of the human mind that does not help lead to an 
understanding of how intelligent behavior is generated may be scientifically use-
less, but could still hold great practical and philosophical value.  

The development of WBE would entail a sequence of generating simulations 
based on theory and measured data, comparing them with reality, building revised 
simulations, and so on. A somewhat unusual aspect is that it also includes con-
structing technological tools for automatically converting biological inputs into 
simulation: the project includes not just the normal practice of simulation but a 
partial automation of it. It is not implausible that attempts to automate aspects of 
validation and verification would also be included, producing a semi-automated 
simulation building pipeline.  

It is possible to distinguish several potential success criteria for WBE: 
 

1. “Functional brain emulation”: The emulation simulates the objects de-
rived from brain scanning with enough accuracy to produce (at least) a 
substantial range of species-typical basic emergent activity of the same 
kind as a brain (e.g. a slow wave sleep state or an awake state). It exhibits 
generically correct causal micro-dynamics but not functionally unified in-
to meaningful behavior. 

2. “Species generic brain emulation”: The emulation produces the full range 
of species-typical emergent behavior and learning capacity, but does not 
have any behavior linked to the individual brain(s) used for scanning.  

3. “Individual brain emulation”: The emulation produces emergent activity 
characteristic of that of one particular (fully functioning) brain. It is more 
similar to the activity of the original brain than to the activity of any other 
brain.   
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4. “Social role-fit emulation”/“Person emulation”: The emulation is able to 
fill and be accepted into some particular social role, for example to per-
form all the tasks required for some normally human job.  

5. “Mind emulation”: The emulation produces subjective mental states (qua-
lia, phenomenal experience) of the same kind that would have been pro-
duced by the particular brain being emulated.  

6. “Personal identity emulation”: The emulation is correctly described as a 
continuation of the original mind; either as numerically the same person, 
or as a surviving continuer thereof. The emulation is an object of pruden-
tially rational self-concern for the brain to be emulated. 

 
Of these success criteria only 1-4 are directly observable. Criterion 4 is a border-
line case since it depends on interaction with others. The emulation should be able 
to pass a personalized Turing test: outsiders familiar with the emulated person 
would be unable to detect whether responses came from the original person or 
emulation.  

An emulation that exhibits these individual traits might still fail at being a mind 
emulation (it lacks mental properties) or person emulation (it lacks necessary as-
pects of personal continuity). However, success criteria 5-6 does not appear to be 
directly observable and to what extent they might be entailed by the criteria for 3 
and 4 depends on what theory of mind and identity is adopted  (Chalmers, 2010). 

Success criterion 5 assumes multiple realizability (that the same mental proper-
ty, state, or event can be implemented by different physical properties, states, and 
events). Sufficient apparent success with WBE would provide persuasive evidence 
for multiple realizability. Generally, emulation up to and including level 4 does 
not appear to depend on any strong metaphysical assumptions. 

2.3   Chaos 

An issue is whether simulations of chaotic systems are meaningful. Given that the 
brain almost certainly contains chaotic dynamics (since even a three neuron sys-
tem can become chaotic  (Li, Yu, & Liao, 2001)), the state of a simulation will di-
verge from the state of the original quickly and the predictive validity of the simu-
lation appears low.  

However, what matters is the dynamics and causal structure, not the exact dy-
namic state. Brains or minds in a slightly different activity states are still recog-
nized as the same brains or minds, even though their contents might differ. There 
exists a significant amount of noise in the brain but it does not prevent meaningful 
brain states from evolving despite the indeterminacy of their dynamics. The struc-
tural validity demand on WBE does not demand identical output of the simulation 
and the modeled brain, merely output that is compatible with the output that would 
have been given by the brain if it had been in a similar internal state.  

While predictive validity is important for many scientific models it has not the 
same weight in engineering, where a predictable behavior is more important. For a 
full WBE long-term divergence is also expected: if learning processes and  
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different experiences doesn’t cause the system to change in character like a real 
brain would change, it would not be a successful WBE. 

2.4   Non-organicism 

A key assumption, characteristic of the WBE approach to AI, is non-organicism: 
total understanding of the brain is not needed, just understanding of the compo-
nent parts and their functional interactions. In normal science top-level under-
standing is seen as the goal, with detail understanding merely a step towards it. 
This is why WBE evades many of the standard issues of explanation in the philos-
ophy of simulation: it does not attempt to explain the brain or mind, just copy 
them.  

Can a system be copied without understanding its purpose? It does not seem 
implausible that a person with no understanding of carpentry (or a mindless robot) 
could follow sufficiently detailed IKEA instructions to build a piece of furniture. 
A better understanding of the high level aspects would enable them to perform 
better, but it is not necessary. What is required is the appropriate low-level actions 
that builds the system.  

A simple example of how understanding may not be required for creating com-
plex simulations is software compilers. Compiler programs do not understand 
software and merely perform syntactic operations that transform human-readable 
source code into machine executable machine code. Similarly a WBE pipeline 
might without any understanding mechanically convert a physical system (a brain) 
into a software system (a simulation). 

Constructing the WBE pipeline might embody a sophisticated understanding of 
the brain: requisite scan resolution and modalities, how components work, how to 
test and validate the system. The claim of WBE is that this understanding does not 
have to extend to the meaning of neural systems, merely their internal function. 
One could imagine that the team that reconstructed the 6502 processor were given 
an unknown chip to reverse engineer: their method would have a good chance of 
succeeding, although they would have a hard time testing the validity of their re-
construction. This also shows a key challenge for WBE: even for fairly modest 
success criteria, it can be hard to validate against a system whose function is un-
known. 

Holist theories of mind suggest that everything that is going on will be a func-
tion of what all the other components are doing, with little hierarchy  (Thompson, 
Varela, & Rosch, 1991). While the holistic system might emerge if the parts are in 
place and in the right states, the holistic view might be an argument against non-
organicism: there is no way of separating the levels, and the required understand-
ing to create the emulation will be distributed across them. This links with the 
scale separation issue below. 
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3   Scientific Issues 

This group of issues deals with the actual physical properties of the brain and the 
possibility of humans inferring enough information about them to achieve WBE. It 
also includes the methodological question of how a WBE research program could 
be implemented so as to approach a successful emulation over time. 

3.1   Level of Understanding 

A key issue is what level of detail of understanding the brain is needed. This is 
closely tied to size scales: a higher level of detail typically requires gaining neu-
roscientific information on smaller scales, requiring new modalities of measure-
ment. High resolution scanning also produces more information, requiring more 
storage and processing. Abstract models on the other hand require more complex 
functional understanding of the systems, but less data. The fundamental approach 
of WBE is that it trades high-level understanding for brute force requirements. 

At present there is no consensus on what level of understanding would be 
needed to achieve WBE. An informal poll among researchers suggested that the 
electrophysiological level (cellular compartments) is most popular, but this merely 
represents an opinion  (Sandberg & Bostrom, 2008). Scale separation might 
represent a principled way of reaching a consensus. 

3.2   Finding Biological Modalities 

Analysing the potential of the WBE project also involves estimating the number 
and complexity of biological modalities that need to be modeled. Some issues 
such as whether dynamical state, the spinal cord, volume transmission or glia cells 
need to be included can already be estimated with some precision and does not 
pose any insurmountable simulation problems (Sandberg & Bostrom, 2008). 
Known unknowns such as the number of neuron types, neurotransmitters or rele-
vant metabolites can be bounded. While estimating what remains to be discovered 
in a finite domain is surprisingly problematic (compare with attempts at estimating 
the number of species on Earth  (Bebber, Marriott, Gaston, Harris, & Scotland, 
2007)) the boundedness of the number of possible entities means that the com-
plexity of the simulation is not as strongly affected by new discoveries as it would 
be by requirements of finer resolution.  

The interesting challenge is issues of assessing unknown unknowns, such as 
whether there exist entirely new forms of interactions in the brain. This is truly 
unpredictable, even by analyzing past discoveries. The only way to be certain all 
relevant processes have been included in a simulation is successful brain emula-
tion. Conversely, failure of WBE attempts can give information about missed 
modalities, especially if they are done in close conjunction with in vivo studies. 
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3.3   Computability 

WBE assumes that brain activity in large is Turing-computable. Should important 
functions be uncomputable WBE becomes infeasible (at least on conventional 
computer architectures: it might work on unconventional hardware). At present 
there is no convincing empirical evidence for uncomputability in the brain, al-
though there is no shortage of claims for it. 

A related challenge is component tractability: can the simplest components si-
mulated be understood and measured? For example, if the quantum-mind propos-
als of (Penrose, 1989) were true, the relevant components might be quantum states 
that cannot be measured even in principle, even if their dynamics were known and 
implementable on suitable quantum computer hardware.  

A less exotic form of component tractability problem might be the need for 
analog signals or the right kind of randomness. While we have argued that these 
are unlikely to matter due to noise constraints (Sandberg & Bostrom, 2008), others 
have responded that they might hold an important role in the mind (Shores, 2011). 

3.4   Scale Separation 

In order for simulations on a particular scale to be valid, states and interactions on 
smaller scales must be encapsulated within the states and interactions of the emu-
lation. Otherwise microscale events would produce macroscale outcomes that are 
not captured by the dynamics of the simulation. 

In some physical systems scale separation occurs: there exists a level where in-
teractions on shorter length and time scales average out, producing macroscale 
dynamics uncoupled from the dynamics on smaller scales (Hillerbrand, 2007) A 
typical example is the statistical mechanics of gases, where the exact molecular in-
teractions do not matter for deriving equations of state describing the macroscale 
behavior of the system. Another example is the scale separation between electric 
currents and logic operations in a computer, which enables emulation such as the 
earlier mentioned the 6502 emulation. Unfortunately not all systems show scale 
separation. Turbulent flows for example show correlations between size scales 
that make them interdependent: a simulation leaving out events at a fine resolution 
will produce nonphysical behavior (Bec, Cencini, Hillerbrand, & Turitsyn, 2008). 

Scale Separation is a key challenge for the WBE project. Does there exist a 
scale in the brain where finer interactions average out, or are each scale strongly 
linked to larger and smaller scales? If no such scale separation exists, then the fea-
sibility of WBE is much in doubt: no method with a finite size cut-off would 
achieve emulation. Biologically interesting simulations might still be possible, but 
they would be local to particular scales and phenomena. The existence of scale se-
paration is a fundamental requirement of WBE, a practical problem for finding the 
optimal resolution of the model, as well as an intriguing scientific problem. 

In neural modeling it is common to separate the “mnemonic equations” (per-
manent or quasi-permanent changes in neural activities, such as memory) from the 
“neuronic equations” (the instantaneous behavior of the system), decoupled  
(Caianello, 1961) because they typically occurs on different time scales and hence 



260 A. Sandberg
 

are assumed to be largely decoupled. While the scale separation between different 
levels of the nervous system does not have as radical separation as in statistical 
physics, the different levels of the hierarchy – neural fields, neuron populations, 
individual neurons, ion channels – are often separated by one or two orders of 
magnitude, and may hence be amenable to statistical treatments that average small 
and fast scales, possibly introducing random noise from the coarsegraining of mi-
crodynamics  (Berglund, 2011). 

3.4.1   Identifying Scale Separation 

One way of identifying scale separation is to analyze the capacity for error correc-
tion, where processes either dissipatively dampen deviations or they do not have 
any effect on other systems. In gases macrostates are treated as identical, in digital 
circuits small deviations in voltage are still treated as one or zero. In neurons small 
differences in membrane potential have no effect on the all-or-nothing action po-
tential generated or the postsynaptic potentials; at most they can act by influencing 
the exact timing of the signal generated.  

Given that brains evolved to function in a noisy environment where external 
(e.g. environmental conditions, microtraumas, changing nutrient states, parasites 
etc.) and internal disturbances (e.g. developmental noise, thermal noise, chemical 
noise) are common, various forms of error correction and robustness should be 
expected. Brains sensitive to microscale properties for their functioning would ex-
hibit erratic and non-adaptive behavior. If the differences introduced by simulation 
are smaller than the normal noise level (and of correctable type) then it is likely 
that scale separation would occur. 

A model of a dynamical system might deviate from the original system due to 
uncertainty in initial conditions, parameter uncertainty and model uncertainty. 
Typically the measure of points in parameter space where the dynamics shifts qua-
litatively is small, and for a biological system one should also assume that minor 
changes in structure do not cause catastrophic deviations: they would tend to 
evolve towards structural stability. Hence the qualitative properties of the system 
have a finite tolerance, and a simulation within this tolerance would produce simi-
lar behavior.   

3.4.2   Empirical Bounds on Scale Separation in the Brain 

Microstimulation of individual neurons can influence sensory decisions 
(Houweling & Brecht, 2008). In their experiment rats were trained to behaviorally 
respond to microstimulation of single neurons, showing that scale separation 
doesn’t occur between the single neuron firing level and the behavioral level. 
However, the experiment only succeeded for 5% of the trials and often just in-
duced weak and slow biases. It is not clear whether the experiment could succeed 
with single synapse stimulation.  

The noise level in the nervous system is fairly high, with spike-timing variabili-
ty reaching milliseconds due to ion channel noise. Perceptual thresholds and motor 
precision are noise limited. Various noise management solutions such as redun-
dant codes, averaging and bias have evolved (Faisal, Selen, & Wolpert, 2008). 
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In synapses the presynaptic transient influx of calcium ions as a response to an 
action potential corresponds to just 13,000 ions  (Koch, 1999) (p. 458), and on the 
postsynaptic side just 250 ions  (Koch, 1999)(p. 302). These numbers are so small 
that numeric noise begins to be significant, and the chemical dynamics can no 
longer be described as average concentrations. However, biological systems can 
resist the discretization noise through error correction mechanisms that lead to 
discrete attractor dynamics, in line with the evidence that synaptic plasticity in-
volve discrete changes rather than graded response (Ajay & Bhalla, 2006) (Bhalla, 
2004)(Elliott, 2011). 

It is hence not implausible that there exist sufficient scale separation on the 
synaptic and neuronal level: information is transmitted in a discrete code (with a 
possible exception of timing) between discrete entities. At finer resolution thermal 
and chemical noise will be significant, suggesting that evolution would have pro-
moted error correction and hence scale separation.  

3.5   Brain-Centeredness 

A brain emulation would need to include at least some body and environment si-
mulation. Bodily states are necessary for perception and action, since the brain's 
interaction with the environment is mediated by a body transducing between neur-
al signals and sensory and motor signals. Bodily states also influence brain states 
directly and can contribute content (e.g. feelings of hunger triggered by hormones 
and stomach contractions). Hence some aspects of the body need to be part of the 
emulation framework. By the same token some environment for the body will 
have to be included.  

The level of brain-centeredness of WBE can get away with is uncertain. Some 
of the more extreme interpretations of the extended mind hypothesis seem to re-
quire emulating not just a brain but a whole social and physical environment (or 
linking the emulation through a robotic body with the physical world). On the oth-
er hand, people with serious disabilities still exhibit minds and selves despite 
strongly constrained bodies. 

The science and technology needed for accurate body models is likely to arrive 
well before WBE itself, especially since many of the physiological simulation and 
measurement methods may be necessary for developing WBE. Medical needs and 
entertainment (VR, realistic games) are likely to push realistic limits.   

4   Technological Issues 

This group of issues deals with the technological feasibility of scanning brains and 
emulating them.  

4.1   Simulation Tractability 

The challenge of simulation tractability is whether simulation at the level set by 
scale separation can be done on a realizable computer. This might be fundamental 
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(if the brain components are doing uncomputable operations) or practical (there 
will not be enough computing power available in the future to achieve meaningful 
WBE). As argued above, no uncomputable operations have so far been observed 
to play a biological role. However, at present we are certainly unable to muster the 
computer power required for WBE: the real feasibility question is if and when 
such computer power becomes available.  

One way of approaching this problem is to estimate available future computing 
power and compare it to estimates of brain emulation requirements (c.f.  
(Sandberg & Bostrom, 2008) p. 79-81). This produces a lower bound on when the 
technology might be available, since it is possible that the necessary interest, 
science or funding has not arrived at the time. While this might be of limited use 
for arguing in favor of the eventual feasibility of brain emulation, it allows bounds 
on earliest arrival times that might be relevant for risk or policy considerations.  

4.2   Scanning Tractability 

A related issue is whether scanning methods for the necessary level of detail are 
realisable (or ethically acceptable). 

Technologically there currently exist methods of imaging volumes of neural 
tissue at resolutions enough to discern the finest fibers  (Hayworth, Kasthuri, 
Schalek, & Lichtman, 2006) and detecting chemical content at slightly lower reso-
lution  (Micheva & Smith, 2007). The main limitation is that the scan volume is 
very limited. Arguments for the feasibility of scaling this up to mouse-brain size in 
the very near future have been made (http://www.brainpreservation.org/ ). If the 
required resolution is finer, for example involving molecular complexes or the ex-
act genetic state of each cell, then the realisability becomes more uncertain.  

Scanning brains to produce emulations will likely be a destructive process, and 
the research needed to bring brain emulation to a success criterion will most cer-
tainly involve running software that might have phenomenological states under 
conditions that are aversive. There might hence exist a hindrance due to research 
ethics to enabling brain emulation: the necessary experiments might be technolo-
gically possible, but would be unethical to perform because they involve excessive 
risk of suffering. However, ethical unfeasibility does not seem likely to prevent 
practical exploitation if the rewards are high enough.  

5   Conclusions 

WBE is a deeply challenging and long-term prospect. Given current neuroscientif-
ic and technological knowledge there doesn't seem to exist any fundamental ob-
stacles, merely a large amount of engineering and research. Yet, extrapolations of 
technology and neuroscience are untrustworthy, especially given the possibility of 
foundational objections. While there doesn’t seem to exist any convincing knock-
down arguments within the philosophy of mind against WBE, part of the reason 
may be that the overall success criteria are relatively floating. 
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A problematic issue for the feasibility of WBE appears to be to bridge the high 
aims of structural validity with the limitation to just replicative validity. Develop-
ment of new methodologies of testing and quality assurance are likely necessary. 

In the near future the scale separation issue might provide a fruitful empirical 
way of testing the feasibility of WBE, with relevant implications in philosophy of 
mind and neuroscience. Attempts at achieving WBE may yield fruitful informa-
tion about the way complex behavior and perhaps minds emerge from neural sys-
tems. This includes the roles of noise and analog signals, the interaction between 
systems on different scales, the epistemology of neuroscience and (in the case of a 
convincing success) evidence for or against some theories of mind. 
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C.S. Peirce and Artificial Intelligence: Historical 
Heritage and (New) Theoretical Stakes 

Pierre Steiner* 

Abstract. This paper presents some points of proximity between Peirce’s insights 
on the technical/artificial nature of cognition, and contemporary theories of ex-
tended cognition. By doing so, it sheds some new light on the possible relevance 
of Peirce’s philosophical approach for artificial intelligence, notably regarding the 
differences between the reasoning abilities of machines and those of humans. 

Precisely how much of the business of thinking a machine could possibly be made to 
perform, and what part of it must be left for the living mind, is a question not without 
conceivable practical importance; the study of it can at any rate not fail to throw 
needed light on the nature of the reasoning process.  Peirce, [15:165] 

1   Introduction 

This is a philosophical paper about some classical foundational issues in artificial 
intelligence (AI). AI and philosophy share interests in many questions. This is 
why Dennett once wrote that 

 

AI is, in large measure, philosophy. It is often directly concerned with instantly 
recognizable questions: What is mind? What is meaning? What is reasoning and 
rationality? What are the necessary conditions for the recognition of objects in 
perception? How are decisions made and justified?  [9:265-266] 
 

But AI and philosophy do not take similar paths for tackling these questions. 
Methodologically, AI is definitely not philosophy (and conversely). Still, mutual 
enlightenment in terms of results and challenges is a real and interesting possibil-
ity. Concerning the relevance of the philosophical stance for science (including 
AI), Dennett – again – remarked that 

 

Philosophy does not often produce stable, reliable ‘results’ the way science does at 
its best. It can, however, produce new ways of looking at things, ways of thinking 
about things, ways of framing the questions, ways of seeing what is important and 
why.  [8:2] 
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I shall take for granted here that conception of the relevance of philosophy for AI. 
Like philosophy of neurosciences, philosophy of psychology, or philosophy of 
linguistics – and unlike, for instance, neurophilosophy – philosophy of AI does not 
primarily draw on the results of AI for proposing new philosophical perspectives; 
its main purpose is rather to inquire into the foundations, assumptions and ex-
planatory concepts of AI, making them explicit, reinforcing them, criticizing them, 
or proposing other ways and perspectives, as Dennett suggests. Accordingly, this 
paper will be about the relevance of some aspects of C.S. Peirce’s (1839-1914) 
philosophy for AI. True, Peirce did not know AI as a scientific enterprise as it was 
emerging around the beginning of the second half of the 20th century (although, as 
we will see, he was probably the first philosopher who paid attention to the ances-
tors of computers: logical machines). But this is also the case for Hobbes, Leibniz, 
Boole, or Frege! Why could not we use these thinkers, from the philosophical per-
spective defined above, for reflecting on AI as we know it today (just bearing in 
mind the constant danger of producing possible anachronisms)? 

Moreover, there is already a substantial theoretical literature devoted to the 
relevance of Peirce’s philosophy and semiotics for AI [1, 10b, 21, 22, 23,], and, 
more broadly, cognitive science [25, 11]. It is mainly from Peirce’s semiotics and 
theory of representation that most of these uses have been made, in the context of 
a critical completion of classical AI and/or classical computational theory of mind.  

Following the lead recently opened by Peter Skagestad [19], I would like here 
to explore the challenging proximities between Peirce’s philosophy and some 
post-cognitivist approaches to intelligence. By “post-cognitivist” I especially 
mean here extended and embedded theories of cognition [12, 5] (there will be 
some thoughts about embodiment in the conclusion). Let it be clear that I do not 
claim here that these new approaches are true, or even that they are more coherent 
than traditional approaches (cognitivist or connectionist). Relying on the existing 
literature about the limits of classical approaches [18, 24] and on the advantages of 
new ones [3], I just assume these new approaches are, prima facie, no more im-
plausible than their putative classical competitors1. Like their competitors, how-
ever, these new approaches are built on largely implicit theoretical and philoso-
phical commitments on the nature of cognition and reasoning, and on the relations 
between cognition, life, artificiality, and the world. I propose here to exploit some 
strands in Peirce’s philosophy that are close to these commitments, and that can 
clarify them by putting them into perspective with some issues in AI. More pre-
cisely, I will argue that an examination of Peirce’s philosophy might be fruitful 
from at least three perspectives:  

 

1) Suggesting how Peirce was one of the first philosopher to develop the idea 
that human intelligence is artificial because it is constantly extended across 
the use of artefacts (section II); 

2) Recalling how Peirce defined the differences between reasoning machines 
and the reasoning abilities of humans (section III); 

3) The surprising effects of the coupling of (1) with (2) (section IV). 
                                                           
1 I say “putative” here, since there has not been, up to now, a convincing argument showing 

that embodiment and extendedness are definitely incompatible with computational or 
connectionist models of cognitive processes. 
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2   Peirce and the Artificial Character of Human Intelligence 

Peirce criticized many aspects of Cartesian philosophy. In his two essays “How to 
make our ideas clear” and “The formation of belief”, both published in 1868, 
Peirce notably argued, against Descartes, that no idea can be conceived as clear 
and distinct by being considered alone. It is rather meaningful and determinate on-
ly in relation with other ideas that interpret it, and with the conduct it contributes 
to produce.  Meaning is thus never located, for Peirce, in a single  thought: it is ra-
ther found in the process through which a thought refers to some object by virtue 
of the thought that precedes it and by giving rise to a new thought that interprets it, 
itself referring to some object by virtue of the production of a new thought and of 
its relation to the thought it interprets, and so on ad libitum; the “final” interpretant 
of a thought being a habit or a behavioural change (5.284; [20:217])2. Peirce thus 
writes: 

 
At no instant in my state of mind is there cognition or representation, but in the 
relation of my states of mind at different instants there is.  (5.289) 
 

But Peirce’s most fundamental criticism against Descartes goes as follows: 
 

Modern philosophy has never been able quite to shake off the Cartesian idea of the 
mind, as something that "resides" – such is the term – in the pineal gland. Everybody 
laughs at this nowadays, and yet everybody continues to think of mind in this same 
general way, as something within this person or that, belonging to him and 
correlative to the real world.  (5.128, 1903) 
 

Mental phenomena, for Peirce, are to be defined formally, and not with reference 
to brain processes or to consciousness (following Peirce’s criticism of the Carte-
sian ego). Mind is not a substance, but a process we can semiotically define and 
study (5.251, 5.289, 2.26, 1.349). There is thought without language (and sym-
bols); but every thinking process is made up of signs that stand for some object, 
for someone or for some further thinking process: another sign, itself standing for 
some object, for someone or for some further process, and so on… Signs are not 
expressions or products of mind; mind rather consists in the development of signs, 
or semiosis (sign-activity). “The mind is a sign developing according to the laws 
of inference”, Peirce even says (5.313).  But what is a sign? Here is one of 
Peirce’s classical definitions, from 1897:  

 
A sign (…) is an object which is in relation to its object on the one hand and to an 
interpretant on the other, in such a way as to bring the interpretant into a relation to 
the object, corresponding to its own relation to the object.  (8.332) 
 

A sign not only stands for something; it also stands to someone or to something, 
by creating in that person or in that process (natural or artificial) another sign, the 

                                                           
2 When the reference to Peirce’s work has the (X.XXX) format, the first number (before 

dot) refers to the volume number of the Collected Papers (see bibliography), the other 
number (after the dot) refers to the paragraph number.  
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interpretant, that puts the sign into relation with its object  (2.228-2.229). That is a 
triadic model of what a sign is, according to which there is no sign-relation (and 
reference) without some user or consumer that interprets the sign in virtue of the 
production of another sign (and, ultimately, behaviour). 

Logical machines (whether they be those developed at the time of Peirce by 
Babbage, Jevons, or Marquand, or those of today in the form of computers) have a 
semiotic structure: they include, produce and are signs that are addressed to some-
thing (the components) and/or someone (the user) in a process ending with behav-
ioural performances; they are also capable of drawing inferences. From these con-
siderations alone, one could already say, with Peirce, that mental activities and 
processes are not only to be found inside of the heads of biological organisms.  

But there is (much) more than that. Indeed, in his work, Peirce developed dif-
ferent (but related) strategies for arguing that mind and mental phenomena could 
not exclusively be intra-cranially located: metaphysical arguments on the relations 
between natural phenomena and final causation or “thirdness” (they will not be 
developed here), logical arguments on the semiotic character of mental phenom-
ena (as suggested above), but also functional arguments according to which arte-
facts and appliances may be constituents of the mental activities of individuals,  
by virtue of the role they play in processes such as reasoning, perceiving or calcu-
lating. It is on that latter idea I will now focus, putting it in relation with the con-
temporary hypothesis of extended cognition [5]. For instance, for Peirce, the 
originality of Lavoisier’s revolution in chemistry was 

 
to make of his alembics and cucurbits instruments of thought, giving a new 
conception of reasoning as something which was to be done with one's eyes open, in 
manipulating real things instead of words and fancies.  (5.363, 1877) 
 

Their functional role in cognitive activities is one of the reasons why “it is no fig-
ure of speech to say that the alembics and cucurbits of the chemist are instruments 
of thought” [15]. In other places of his work, Peirce insisted on how mathematical 
reasoning crucially involved the creation and the manipulation of external repre-
sentational systems, including icons, graphs and diagrams [2]. Peirce also defined 
algebra as “the best of all instruments of thought” [15:169], notably because of the 
symbols (such as parentheses) it offers to human reasoning. Cognitive agency, for 
Peirce, often – but not necessarily always – relies to a large extent on the manipu-
lation and on the transformation of exo-somatic material structures. In 1887, in his 
paper “Logical Machines”, Peirce remarked that the unaided mind (and logical 
machines) is limited in many respects, while « the mind working with a pencil and 
plenty of paper has no such limitation ».  In the context of their manipulation, exo-
somatic structures may accomplish a piece of work that is so crucial for the 
achievement of cognitive tasks that only neurobiological chauvinism [6] would 
lead us to limit the workings of mind to the boundaries of the nervous system 
(leaving aside here the other arguments Peirce offers for casting doubts on the ex-
clusive intracranial location of cognitive processes). Still, for Peirce, we may in 
some circumstances “perform a reasoning in our unaided minds”, i.e. without us-
ing or manipulating exo-somatic structures. Peirce, and contemporary proponents 
of the hypothesis of extended cognition, do not hold that the supervenience basis 
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of cognitive processes always includes extended (i.e. non brain-bounded) material 
structures and their use. They rather hold that in at least some cases it is possible 
for cognitive processes to be spatially distributed over the manipulation, use or 
transformation of environmental structures, so that the (locational) internalist prin-
ciple according to which “cognition is (only) in the brain and in the body” is ques-
tionable. These cases can notably include learning operations, from which we are 
then able to reason “in our unaided minds” only, using internalized forms of the 
external processes and resources (environmental inscriptions, for instance) we 
have formerly manipulated. In another famous passage of his work, Peirce writes: 

 
A psychologist cuts out a lobe of my brain and then, when I find I cannot express 
myself, he says, 'You see, your faculty of language was localized in that lobe.' No 
doubt it was; and so, if he had filched my inkstand, I should not have been able to 
continue my discussion until I had got another. Yea, the very thoughts would not 
come to me. So my faculty of discussion is equally localized in my inkstand.  
(Peirce, 7.366, 1905)  
 

There are two moves Peirce makes here and that we should carefully distinguish: 

1. It is somehow absurd to identify a mental faculty such as language with the ef-
ficient conditions in virtue of which we possess or manifest it: that kind of re-
ductionist identification would imply that the faculty is localized everywhere 
there are structures that causally contribute to its exercise: brain processes, 
tongues, inkstands, lips, lungs,...  

2.  On the other hand, Peirce is ready to admit that we can localize mental facul-
ties in all these structures, biological and artificial, if this localization is a vir-
tual localization. Peirce says: 
 
A virtual X (where X is a common noun) is something, not an X, which has the 
efficiency (virtus) of an X.  (6.372) 
 

Cognitive faculties – language, reasoning, perception, memory,… – cannot be lo-
calized in a reductionist fashion in what makes them possible. But they can be vir-
tually localized there: together, structures – biological and technological – prop-
erly used and manipulated, make cognitive faculties efficient. Mind is virtually 
where it is exercised. One can, for instance, find thoughts where it is possible to 
express, preserve, share or communicate thoughts. As Peirce says, 

 
the psychologists undertake to locate various mental powers in the brain; and above 
all consider it as quite certain that the faculty of language resides in a certain lobe; 
but I believe it comes decidedly nearer the truth (though not really true) that 
language resides in the tongue. In my opinion it is much more true that the thoughts 
of a living writer are in any printed copy of his book than that they are in his brain. 
(7.364) 
 

That virtual identity between mental faculties and material structures is not an on-
tological identity: that would be confusing a capacity with the efficient conditions 
and causes in which it is acquired and exercised. Inkstands, tongues or brains are 
neither mental objects nor purely physical objects since (on the latter point), in vir-
tue of their role in and for languaging, they are virtual realizers of the faculty of 
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language. The point is thus, on the one hand, to understand localization in a non-
reductionist fashion and, on the other, to make that virtual localization plural: the 
relation between language and brain is no more privileged or central than the rela-
tion between that very same faculty and the inkstand. These relations are equiva-
lent (Peirce 7.366; [19:248]).  

There is a last point to be made before going to the next section; it will sum up 
the importance of Peirce’s historical heritage for our purposes in this paper. 

As said above, for Peirce, the workings of mind (in cases such as inferring, cal-
culating, reflecting, or even controlling one’s own thoughts (see below)) can be all 
distributed across external symbols, logical rules and machines, instruments, and 
their manipulation. That idea has deep methodological consequences. It frames a 
new program of research according to which the study of human intelligence in-
cludes a study of the various ways human agents can be coupled with technologi-
cal structures, and of the consequences of that coupling for intelligence (including 
coupling with symbols, spoken words, maps, beads of abacuses, cell phones, 
PDAs, computers, and the World Wide Web). How does the use of technologies 
affect, modify or expand our interactions, modes of reasoning, perceiving, desir-
ing, memorizing, and so on? What is – or what should be – the main assumption 
of that program of research is that what made and makes human intelligence dis-
tinctively human is mostly its constant exploitation of artefacts: tools, symbols, 
representational and semiotic systems, paraphernalia, and even institutions (the in-
stitution of language, for instance). That exploitation and dependence is so perva-
sive and fundamental (in the case of humans) that it might be seen as being  
constitutive3 of human intelligence (especially memory, reasoning and problem-
solving). This is maybe why one could hold that, to some extent, human intelli-
gence is artificial right from the start. The artificial character of human  
intelligence is related to it naturally being made of (the use of) artefacts. Take ar-
tificial milk: one can make a distinction between naturally-made milk and artifi-
cially-made milk. But, in the case of human intelligence, from the point of view of 
its history, its ontogenetic development and of its achievements today, can we 
really find well-defined and pervasive cases of cognitive processes not presuppos-
ing or relying on the use of technologies, including language (oral and written), 
arts, tools, social customs and semiotic practices [10]? If one accepts the idea that 
human intelligence is artificial right from the start, then the project of AI as a dis-
cipline is to focus more on the development of collaborative machines and on the 
study of the various modes and possibilities of coupling between human agents 
and machines, constituting intelligent global systems. Machines do not (probably) 
think; we are (probably) not machines; but our thinking abilities crucially include 
machines and artefacts, and their use. 

This idea is not new: even before contemporary writings on extended cognition, 
many philosophers, thinkers and engineers defended it. A non-exhaustive cartog-
raphy would include at least three generations of thinkers: (1) a contemporary 
generation, including Continental philosophers (Stiegler), and current proponents 
                                                           
3 Because of obvious lack of space, I cannot tackle here the classical objection according to 

which proponents of extended cognition confuse causal relations with constitutive  
relations. 
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of the hypothesis of extended cognition, be they functionalists (Clark, Rowlands, 
Wilson, Wheeler,…), integrationists (Menary, Sutton,…), or friends of Dynamical 
Systems Theory (Chemero,…), and their main acknowledged influences (Hauge-
land, Donald, Norman, Hutchins); (2) a mid-20th century generation, crucially  
including philosophers (Popper, Goody, Derrida), anthropologists (Bateson), pa-
laeontologists (Leroi-Gourhan) and especially engineers (Bush, Licklider, Engel-
bart). And it seems fair to say that, along with Dewey, Vygotsky, Husserl (for 
mathematical reasoning), and Freud (for memory)4, Peirce would figure in the first 
generation of these thinkers. 

In this section, I have presented two arguments according to which, for Peirce, 
artefacts and machines can be parts of cognitive processes: a logical argument 
concerning the semiotic character of mental phenomena, and (especially) a func-
tional argument on the constitutive role of these machines and artefacts for human 
intelligence. The idea that the cognitive processes of individuals may extend be-
yond their skin and skull, as they are notably composed of, constituted by, or  
spatially distributed over the manipulation, use or transformation of artefacts and 
machines was already suggested by Peirce. But not only: I now want to show how 
Peirce’s philosophy is very relevant if we want to inquire about the differences be-
tween the reasoning abilities of machines and human intelligence, in a framework 
in which human intelligence is notably made of machines, symbols, and their use. 

3   Peirce on Logical Machines and Human Reasoning 

Already in 1887, Peirce devoted a study (titled “Logical Machines”) on the phi-
losophical implications of Jevons’, Marquand’s, and Babbage’s logical machines. 
According to Peirce, these machines are clearly reasoning machines: they follow 
logical rules, and display abilities of inference, synthesis and self-control. Reason-
ing, for Peirce, is the process of drawing inferences [19:254]. And these machines 
include signs. It even seems that for Peirce, any logical reasoning must be com-
putable by a machine: 

 
The secret of all reasoning machines is after all very simple. It is that whatever 
relation among the objects reasoned about is destined to be the hinge of a 
ratiocination, that same general relation must be capable of being introduced 
between certain parts of the machine. [15:166]  
 

Still, for Peirce, there are important differences between the reasoning abilities of 
logical machines and the reasoning processes of human agents. These differences 
are clearly not a matter of (lack of) originality or (lack of) of consciousness. 
Peirce’s anti-cartesianism led him to refuse to consider that consciousness (be it 
reflexive or phenomenal) was an essential feature of mental activities. The rejec-
tion of originality as an essential criterion of demarcation between the reasoning 

                                                           
4 I do not claim here that these thinkers endorsed what we know today as the hypothesis of 

extended cognition. I only hold that we can find important texts by these authors in which 
the possibility that intelligence (reasoning, calculating, memory,…) is made up of artifacts 
(linguistic or not) and their use is explicitly suggested. 
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abilities of humans and those of machines is justified for conceptual reasons: ma-
chines are machines because we do not want them to be original! If an automatic 
system were to display originality in the production of its behaviour – or, more 
precisely, too many unpredictable reactions – we would not call it or use it as a 
“machine” anymore!   Peirce says: 

 
We no more want an original machine, than a house-builder would want an original 
journeyman, or an American board of college trustees would hire an original 
professor. [15:168] 
 

Still, the denial of the idea that machines could or should be original does not 
mean that Peirce believed non-deterministic machines were not possible [19:255]. 
The basic difference between the reasoning abilities of machines and humans is 
related to the degrees of self-control they can respectively exhibit. Self-control, for 
Peirce, does not presuppose a self or constituted, substantial agent. According to 
Peirce, the self is first and foremost a sign in the process of development (5.313). 
Self-control basically denotes, in any creature, artificial or not, the ability to com-
pare one’s actual deeds with standards of correctness. As Larry Holmes holds, 
self-control, for Peirce, is “not the control of a self (substantively), but simply au-
to-control, the control from within of whatever kind of organism the human being 
is found to be” [13:126]. In order to illustrate what self-control consists in, Peirce 
notably takes the case of the governor on a steam-machine. Accordingly, the most 
basic form of self-control lies in inhibitions and coordinations, ensured by a 
mechanism of feed-back (see 5.533 for a description of the various grades of self-
control). Logical machines, for Peirce, exhibit self-control (and thus deliberate 
reasoning processes), but not deliberate, infinite or endless, and vaguely finalized 
or purposive self-control [22:104]. I will here mostly focus on the (supposed) infi-
nite character of human self-control (8.320). 

In 1906, Peirce expressed more precisely his intuition: human reasoning is no-
tably special (and, in that sense only, genuine) in virtue of the high degrees of self-
control and self-correctiveness it can exercise on conduct: control on control,  
self-criticism on control, and control on control on the basis of (revisable and self-
endorsed) norms and principles and, ultimately, aesthetic and moral ideals. Human 
reasoning is ultimately constituted by some general forms of control over control: 
they are not local since, according to H. Pape [14:141] they “relate various in-
stances of self-control into a growing, heterogeneous, but regularly ordered net-
work of past and future actions and events within a temporal sequence”. The fact 
that reasoning human agents have purposes is crucial here: it is on the basis of 
purposes that they are ready to endorse, change or criticize specific methods of 
reasoning (inductive, formal, empirical,...), but also to revise and reject previous 
purposes. Contrary to machines, humans do not only have specified purposes. 
Their purposes are often vague and general. In other passages, Peirce suggests that 
this ability for (higher-order and purposive) self-control is closely related to the 
fact that human agents are living, and especially growing, systems [14:144]. 

There is no room here for exposing clearly all these Peircean insights. I will 
concentrate the remainder of this section on the following point: the ability to  
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acquire and to exercise higher levels of self-control involves the use of symbols 
and, more broadly, exo-somatic representational structures. Peirce writes:  

 
Thinking is a kind of conduct, and is itself controllable, as everybody knows. Now 
the intellectual control of thinking takes place by thinking about thought. All 
thinking is by signs; and the brutes use signs. But they perhaps rarely think of them 
as signs. To do so is manifestly a second step in the use of language. Brutes use 
language, and seem to exercise some little control over it. But they certainly do not 
carry this control to anything like the same grade that we do. They do not criticize 
their thought logically. (5.534)  
 

Higher-order control therefore requires meta-representing abilities. These meta-
representing abilities have signs as objects (we think of signs as signs). This ob-
jectivation of signs and semiotic processes is made possible by a higher-order use 
of language, involving representations of logical standards and rules (allowing for 
criticism, formalization and revision of reasoning processes), and thus also written 
signs, such as symbols (4.531). Material objects, in front of us, can be symbols, 
and inscribe contents and meanings. Belonging to types, spatio-temporal represen-
tational tokens put us into relation with abstractions and general concepts. Being 
material, shareable and perceived, these inscriptions also enable us to objectify 
contents and meanings, and to treat them as objects of reasoning and critical 
evaluation. These external symbolic representations also allow us to coordinate 
and represent possible actions and their likely consequences, before possible in-
ternalization [4]. Along with Vincent Colapietro [7:chap.4], we can claim that, for 
Peirce, self-control is not exercised by something within the human organism, but 
by the human organism as it has been transformed by the practice of signs that 
exerts control. To put it otherwise, for Peirce, what enables the gain of higher 
forms of self-control does not primarily lie in subjective or individual-bounded pa-
rameters, but in the use of environmental structures such as symbols (not to  
mention here, for Peirce, the importance of the social articulation of logic and  
reasoning): 

 
Man makes the word, and the word means nothing which the man has not made it 
mean, and that only to some man. But since man can think only by means of words 
or other external symbols, these might turn round and say: "You mean nothing which 
we have not taught you, and then only so far as you address some word as the 
interpretant of your thought." In fact, therefore, men and words reciprocally educate 
each other; each increase of a man's information involves and is involved by, a 
corresponding increase of a word's information. (5.313) 

4   Conclusion 

So far, we have defined two important points that can be squeezed out of Peirce’s 
philosophy. One of these points is crucial for any theory of extended cognition: it 
is the idea that human intelligence is essentially artificial – that is, constantly rely-
ing or exploiting artefacts, be they linguistic or not, abstract (internalized) or not. 
Put otherwise, intelligent or cognitive systems are often composed of coupling re-
lations between humans and technologies. The other point is a classical point for 
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philosophers of AI: it is the idea that human intelligence/reasoning may differ 
from machine intelligence/reasoning in virtue of the higher degrees of reflexivity 
and self-control it can exhibit. One of Peirce’s originality in his philosophical con-
tribution to AI is that he offers these two points. But not only. Indeed, I will con-
clude by suggesting how these two points, once they are put together, foster a third 
idea even worthier of consideration. 

The reasoning goes as follows: 
 
(P1) The difference between human reasoning and machine reasoning is basi-

cally related neither to consciousness nor to originality, but to the degrees of con-
trol, purpose, and reflexivity human reasoning can exhibit (section III). 

 
(P2) Human intelligence – including how we acquire and exercise self-control, 

purpose, and reflexivity – is basically made up of exo-somatic artefacts (including 
representational systems) and their use (section II; end of section III). 

 
(C1) It is necessary to give up the quest for some non-technological factor(s) 

that would make human reasoning and perhaps, more broadly, intelligence radi-
cally different from the abilities exhibited by machines (since the latter one are 
also artefacts and/or made of artefacts (including semiotic processes)).   

 
(C2) One of the fundamental ways for machines to approach (human-like) 

higher levels of reflexivity or self-control would be for them to be able to off-load 
some parts of their architecture or cognitive powers (and their products) into exo-
somatic artefacts, public symbols, and other machines, whose use would then al-
low them to acquire and to exercise those higher levels of reflexivity and  
self-control. 

 
(C1) is not totally new and challenging. But (C2) somehow is. Let me conclude 

by explaining why, notably in relation with the recent “embodied” approach in ro-
botics5. 

 
In the last two decades or so, there has been important progress in AI concerning 
the development of robotic architectures relying on the coupling relations between 
machines and their proximal environment (e.g. works by Brooks, Pfeifer, 
Ziemke,…). The main strategy, here, is to provide the robot with the capacity to 
(better) exploit or respond to the structure of the environment, so that one can un-
burden its internal architecture of some expensive computational tasks. In order to 
achieve that strategy, work on the embodied dimensions of artificial creatures is 
often considered as crucial. Some robotic architectures for instance rely on the use 
of compliant effectors for replacing control algorithms with creative mechanical 
design, allowing for more precise control of manipulations (see also the achieve-
ments with SLAM (Simultaneous Localization and Mapping) architectures). 

                                                           
5 I am especially grateful here for the suggestions and technical remarks of one of the refe-

rees for the conference. 
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Still, by the light of what has been said before, it would be somehow mislead-
ing to assume that embodiment would be the main variable making the difference 
between the cognitive abilities of artificial creatures and those of humans. In the 
case of humans at least (but not necessarily unreachable by machines provided 
with organismic embodiment (cf.(C2)), the “morphological computation” [17b] 
made possible by embodiment very often comes with “wide computation” [26], 
that is with the extendedness of cognitive architectures across manipulated arte-
facts (symbolic or not) in the environment, as it was already suggested by Peirce. 
This conjunction entails that the phenomena of embodiment and extendedness are 
not (only) at the service of on-line intelligence and tasks. They rather basically 
contribute to the development of cognitive abilities that aim at going beyond or 
detaching from the here-and-now (cognitive abilities such as self-control, abstrac-
tion, orientation, planning, reasoning about absent, conditional or abstract states of 
affairs…): being embodied, we use, incorporate – and our architectures become 
extended across – environmental resources (notably external symbols and, more 
broadly, the material inscriptions of semiotic processes) that we exploit for think-
ing (and learning to think) beyond what the immediate environment provides us 
with.  
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Artificial Intelligence and the Body:  
Dreyfus, Bickhard, and the Future of AI 

Daniel Susser 

Abstract. For those who find Dreyfus’s critique of AI compelling, the prospects 
for producing true artificial human intelligence are bleak.  An important question 
thus becomes, what are the prospects for producing artificial non-human intelli-
gence?  Applying Dreyfus’s work to this question is difficult, however, because 
his work is so thoroughly human-centered.  Granting Dreyfus that the body is fun-
damental to intelligence, how are we to conceive of non-human bodies?  In this 
paper, I argue that bringing Dreyfus’s work into conversation with the work of 
Mark Bickhard offers a way of answering this question, and I try to suggest what 
doing so means for AI research. 
 

Hubert Dreyfus’s groundbreaking work in the philosophy of mind has demonstrat-
ed conclusively that the body is fundamental to all facets of intelligent life.1  Thus 
Dreyfus has put to rest once and for all the formalist fantasy of a purely algorith-
mic, disembodied mind.2  Furthermore, Dreyfus’s constructive phenomenological 
work on skillful coping provides compelling reasons to believe that producing ar-
tificial human intelligence would effectively require replicating the human body, 
                                                           
Daniel Susser 
Philosophy Department 
Stony Brook University 
e-mail: daniel.susser@stonybrook.edu 
 
1 This work first appeared in manuscript form in Dreyfus’s (1972) What Computers Can’t 

Do: A Critique of Artificial Reason, and was revised in 1979 and again in 1992, at which 
point it was re-issued by MIT Press under the title What Computers Still Can’t Do: A Cri-
tique of Artificial Reason.  As Dreyfus notes in the “Introduction to the Revised Edition,” 
the book has remained largely intact since its first appearance, with only minor changes 
and new introductions with each new edition.  All citations in this paper refer to the 
(1993) MIT Press second printing, as indicated in the list of references. 

2 Jerry Fodor, the arch-formalist, writes some ten years after Dreyfus first presented his  
argument, “If someone—a Dreyfus, for example—were to ask us why we should even 
suppose that the digital computer is a plausible mechanism for the simulation of global 
cognitive processes, the answering silence would be deafening,” quoted in Dreyfus, 
“Overcoming the Myth of the Mental: How Philosophers Can Profit from the Phenome-
nology of Everyday Expertise,” 2005 APA Pacific Division Presidential Address.  Also 
see Bickhard and Terveen (1995), 42-44. 
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socializing and enculturating it into everyday human life, and developing its  
capacities in more or less the same way human beings develop.3  For those who 
take this account to be true, the question of artificial human intelligence has there-
fore ceased, more or less, to be a philosophical question, and has become instead a 
question for engineers.  The question of whether or not artificial human intelli-
gence is possible (and what the conditions of its possibility are) has become the 
question of whether or not it is technologically feasible to replicate the human 
body, embed the replica in human society, and so on. 

Yet even in the wake of this analysis important philosophical questions remain 
unresolved.  If one assumes, as I do, that producing artificial human intelligence 
(so conceived) is not feasible, a principal question becomes whether it is possible 
and what it might mean to produce some form of artificial non-human intelli-
gence.  After all, we find myriad forms of intelligence in the natural world: most 
people ascribe intelligence to cats and dogs; dolphins are without a doubt intelli-
gent; and even certain birds and octopuses have demonstrated intelligent behavior.  
And while we can’t necessarily understand such intelligent creatures fully, we can 
certainly understand some of them well enough to interact intelligently with them.  
Thus even if it’s the case that we cannot produce artificial human intelligence, we 
might want to produce some other form of intelligence, some kind of intelligence 
which is neither human-like nor dog-like nor dolphin-like, but which is usefully or 
interestingly intelligent nonetheless.   

If that is the case, however, we should need to ask whether and how Dreyfus’s 
arguments about human intelligence pertain to such potential alternatives.  Specif-
ically, if the body is fundamental to all facets of intelligent life, it is presumably 
the case that any plausible form of non-human intelligence will have one.  But 
what does that mean?  What would an artificial non-human body look like?  What 
is sufficient for constituting one?  Indeed, what is it that all the various kinds of in-
telligent creatures found naturally have in common?  What is common to human 
bodies and dog bodies and octopus bodies?  Dreyfus’s work doesn’t make this en-
tirely clear.  For his analyses of skillful coping are derived phenomenologically, 
which is to say they are framed in terms of and articulated from the perspective of 
Dreyfus’s own human subject position.  He takes for granted that the intelligence 
under consideration is human intelligence and that the body is a human body.4  In 
order to theorize artificial non-human intelligence while remaining true to Dreyfu-
sian intuitions, it is therefore necessary to expand Dreyfus’s analysis.   

My goal in what follows is to show how we might begin to do that, and to offer 
some thoughts on what expanding the analysis means, theoretically and practical-
ly, for future artificial intelligence research.  In order to do so, I attempt to bring 
Dreyfus’s work into conversation with the work of Mark Bickhard, whose “inte-
ractivist” theory of cognition resembles Dreyfus’s theory of skillful coping in cru-
cial ways.  Where they differ is that Bickhard’s theory is oriented at a much higher 
level of generality than Dreyfus’s.  Instead of being framed in terms of human in-
telligence and human bodies, Bickhard’s account is framed in terms of physical 
                                                           
3 See Dreyfus’s reply to Harry Collins in Dreyfus, “Responses,” in Heidegger, Coping, and 

Cognitive Science. Essays in Honor of Hubert L Dreyfus, vol. 2, ed. Mark A. Wrathall and 
Jeff Malpas, 314-349. (Cambridge, Mass.: MIT Press, 2000), 345-6. 

4 Indeed, that it is a white, male, human body, etc. 
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systems generally.  And thus it offers a way of extracting from Dreyfus’s picture 
the basic features of bodies, common to all intelligent, embodied beings. 

In the first two sections, I very briefly outline Dreyfus’s theory of skillful cop-
ing and Bickhard’s interactivist theory of cognition.  Then I suggest how reading 
Dreyfus and Bickhard together offers a way of conceptualizing non-human intelli-
gence that remains true to Dreyfusian intuitions, and what such a conception 
means for the future of AI. 

1   Dreyfus on Intelligence and Skillful Coping 

To understand Dreyfus’s theory of skillful coping it is helpful to understand the 
critique against which it emerged.  Now classic itself, Dreyfus’s critique of clas-
sical (or computational, or “Good Old Fashioned”) AI goes something like this: 
AI research is built upon two interrelated assumptions, both of which are false.  
First, that intelligence fundamentally is information processing (i.e., the manipula-
tion of context-free symbols according to formal rules or algorithms); and second, 
that everything knowable about the world can be rendered in terms of discrete, in-
dependent representations.  “In brief,” Dreyfus writes in an early paper, “the belief 
in the possibility of AI, given present computers, is the belief that all that is essen-
tial to human intelligence can be formalized” (Dreyfus 1967: 1).  But as Dreyfus 
points out, following Heidegger, Wittgenstein and others, there is a principled dis-
tinction between two aspects of human intelligence—knowing that (i.e., factual 
knowledge and reasoning about it) and knowing how (i.e., skills, behaviors, prac-
tices, etc.).  On the computational view, knowing that is understood as fundamen-
tal, and all other intelligent skills and behaviors—everything from understanding 
language to recognizing faces—are taken simply to be “problems of complexity” 
(Dreyfus 1993: 55).  That is to say, classical AI takes know-how to be derived 
from (and thus explainable in terms of) knowing-that.  For Dreyfus, however, 
nothing could be further from the truth.  Indeed, as he demonstrates, the computa-
tional view is not merely false, it is backwards.  Our know-how is what fundamen-
tally enables us to ‘cope’ with the world around us, not our formal reasoning.  The 
former makes possible the latter.   

The crux of Dreyfus’s argument is that contrary to formalist desires, (1) meaning 
is inherently context-dependent, and (2) context-dependence in principle can’t be 
formalized, because contexts are inherently indeterminate.  Consider the following 
example, borrowed from Wittgenstein: walking down a country road, you come 
across a sign-post with an arrow on it.  How do you know what the sign means?  
Should you follow the direction of the arrow or go in the opposite direction?  Per-
haps the sign is some sort of practical joke or was posted by someone who has a 
different understanding of arrows.  What if the road curves?  Should you deviate 
from it to continue in a straight line or follow along the curve?  Is it significant that 
the sign is red?  Or that a bird is flying in a particular direction overhead?  It might 
be, if by local convention red signs indicate that one should follow the opposite di-
rection of the arrow, or if one happened to know something about avian migration 
patterns.  But then again it might not.  The possibilities are endless. 

This problem, known in linguistics and AI research as the “Frame Problem,”  
is at bottom a matter of determining relevance.  “Framing” something means  
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determining the appropriate context within which to understand it, and doing that 
amounts to determining what is and isn’t relevant to its meaning.  In the above ex-
ample, understanding that the arrow on the sign means “go this way” necessarily 
involves knowing a few things about signs (and indeed, arrows).  First of all, one 
must recognize it as a sign (instead of, say, a place to lock your bicycle).  That 
way, one can determine that what is relevant to interpreting it has mostly to do 
with what is written on it (and not, say, its sturdiness, how well it is anchored in 
the ground, and so on).  But even that initial recognition of the sign as a sign re-
quires a larger context—namely, the context of being in the middle of a journey, 
and not at its end.  Yet determining that context requires an even larger one, with-
in which to understand the concept of a “journey.”  And so on, ad infinitum.  De-
termining the appropriate context for understanding some phenomenon always re-
quires appealing to another, larger context.  Treating the problem formalistically 
therefore leads inevitably to regress.5 

Since we, intelligent creatures, are nevertheless fully capable of doing it, of un-
derstanding things and the situations in which they arise, it seems then that we 
must do it in some other (non-formal, non-computational) way.  Indeed, Dreyfus 
argues (following Heidegger), that the frame problem only arises in the first place 
because formalists have misunderstood the nature of intelligence.  Formalists be-
lieve that intelligent creatures are confronted with situations, when in fact what 
normally happens is that we find ourselves in them.6 On the former picture, an in-
telligence comprised of context-free facts and formal rules for manipulating them 
must reckon with a world of meaning fundamentally unlike itself—an unruly 
world, one which is contextual and indeterminate.  It must either find or create a 
context within which to understand the phenomena at hand.  The latter picture, 
however, suggests that the world and the intelligent actors in it are essentially of 
one piece.  One need not find a context, for one is always already in one.  This 
view suggests that we ought to understand the meaningful world as our world, as 
the world in which we are necessarily embedded, the world in which we live and 
act, and about which, sometimes, we think.  The world understood in these  
terms is not a world comprised fundamentally of facts, but rather of tendencies, 
behaviors, practices, and skills.  (It is comprised of facts, too, of course, but not 
fundamentally).  This alternative to the formalist picture describes a world that is 
comprised, at bottom, of know-how.  Furthermore, insofar as it is our world it is 
                                                           
5 Dreyfus argues that this can be seen most clearly in modern formalist attempts at con-

structing psychological (or intentional) laws—in cognitive science, for example.  The 
chief aim of cognitive scientists, according to Jerry Fodor, is to define computational me-
chanisms (i.e., formal rules or algorithms) that explain intentional laws (Fodor 1991: 20).  
All such laws, however, must contain ceteris paribus conditions.  That is, they are neces-
sarily ‘non-strict’, or apply ‘everything else being equal’ (21).  Dreyfus argues that the 
ceteris paribus clause is essentially formal notation representing the background of hu-
man knowledge, and that “what ‘everything else’ and ‘equal’ means in any specific situa-
tion can never be fully spelled out without regress” (Dreyfus 1993: 57). 

6 Of course, we are sometimes confronted with a situation. Which is to say, we sometimes 
have to understand a situation from the perspective of an outside observer, such as when 
we watch a movie or the news.  On the account I am presenting here, however, our capac-
ity to understand such situations is parasitic upon a more fundamental form of under-
standing—namely, absorbed skillful coping. 
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one in which we fundamentally have a stake, a vested interest.  The meaningful 
world is one about which intelligent actors have no choice but to be concerned.  
Sure, human beings may, at our relatively high level of intelligence, choose how to 
care about it, choose what to value more and what to value less.  But insofar as we 
must act we are shaped and guided by our basic, inescapable interest in the way 
that activity relates us to and positions us within the world.7   

On the whole, this background of know-how thus functions as a sort of global 
or ultimate context, shaping how we perceive the situations we find ourselves in, 
pre-reflectively selecting what is relevant for understanding them.  Which is to 
say, our relationship to (and understanding of) the world is, at bottom, structured 
by our skills and skillful activity, and it is directed toward the satisfaction of those 
interests around which such skills develop in the first place.  Put another way, this 
background enables us to cope.  And it is here, for Dreyfus, that the body enters 
the picture.  For in order to explain exactly how it is that this kind of coping or 
skillful coping works, he argues that we must look to our bodies.   

At each moment and in every situation the body guides our sense of what is re-
levant, he claims, and it does so in three ways.  The first has to do with brain ar-
chitecture:  “The possible responses to a given input must be constrained by […] 
this innate structure [which] accounts for phenomena such as the perceptual con-
stants that are given from the start by the perceptual system as if they had always 
already been learned” (Dreyfus and Dreyfus 1999: 117).  The brain, that is, acting 
as a transducer of sensory information intrinsically limits, by virtue of its physical 
architecture, the possible ways a situation can be perceived.  We see only a certain 
part of the light spectrum, hear only certain wavelengths of sound, and the brain, 
though flexible, combines and interprets such sensory input in a relatively stable 
manner.  The second way Dreyfus calls “body-dependent order of presentation.”   
This describes how the physical structure of the body delimits the possible ways 
one might act in or interact with a given situation, and thus determines the range 
of possible ways one might understand it.  “Things nearby that afford reaching,” 
for example, “will be experienced early and often,” etc. (Dreyfus and Dreyfus 
1999: 118).  The world is one in which we must act, and our bodies are such that 
only certain kinds of actions in certain situations are possible.  Thus our under-
standing of the world is shaped each moment by the presence or absence of those 
various possibilities.  Finally, the body guides our sense of what is relevant by 
aiming for what, following Merleau-Ponty, Dreyfus calls maximum grip—“the 
body’s tendency to refine its discriminations and to respond to solicitations in such 
a way as to bring the current situation closer to the optimal gestalt that the skilled 
agent has learned to expect” (Dreyfus and Dreyfus 1999: 103).  That is to say, the 
agent’s overall sense of a situation implies an optimal relationship between the 
agent and the environment and “those input/output pairs will count as similar  
that move the organism towards maximum grip, which is itself a function of  

                                                           
7 This anticipatory dimension of meaning is crucial and has to do with what Heidegger calls 

“care.”  See Dreyfus on Heidegger on care in Dreyfus, Being-in-the-World: A Commen-
tary on Heidegger's Being and Time, Division I (Cambridge, Mass.: MIT Press, 1991), 
238-45; Dreyfus, “Why Heideggerian AI Failed and How Fixing it Would Require Mak-
ing it More Heideggerian,” Philosophical Psychology 20 (2007): 247-268.  
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body-structure” (Dreyfus and Dreyfus 1999: 118).  Skillful activity is activity 
which can be more or less effective, successful or not.  And the body is a barome-
ter of this implicit normativity, tending naturally toward an agent-environment re-
lationship in which its actions are best positioned to succeed.   

In sum, on Dreyfus’s account the body anchors us at the center of a perspective; 
it opens up a world.  And it does so in three ways: first, by acting as a sensorial 
sieve, limiting at the outset what about the physical world can be perceived; 
second, by structuring the immediate environment around possibilities for action; 
and third, by pre-reflectively orienting movement toward the optimal relationship 
to (and understanding of) a given situation or some object in view.  In other 
words, the body is what makes it possible to discover at any given moment that 
certain parts of the world are relevant to our interests or that they aren’t, indeed to 
have interests at all.  Our bodies embed us in a world of meaningful relations, 
make those relations matter to us, enable us to understand them (and ourselves in 
relation to them), and guide our activities in and through them. 

2   Bickhard on Interaction and Recursive Self-maintenance 

Mark Bickhard has developed a theory of cognition that is very much in the spirit 
of Dreyfus’s account of skillful coping.  Only instead of taking human intelligence 
as his object of analysis, as Dreyfus does, Bickhard aims to investigate intelli-
gence construed more broadly. Bickhard thus articulates his theory in rather more 
general terms than Dreyfus does—namely, in terms not of the human body or  
human intelligence, but of the structures and functions of physical processes and 
systems.  I take Bickhard’s account to be so valuable for artificial intelligence re-
search precisely for this reason, that it describes the actual requirements a physical 
system must meet in order to produce the capacity for some form of intelligence. 
It does not require that such systems are structured exactly like human beings; it 
merely requires that at some basic level humans and any such system have some 
organizational properties in common.8 

                                                           
8 It should be noted at the outset that there appears to be a significant disparity between 

these two views.  Dreyfus explicitly offers his approach as an alternative to representa-
tionalist views (i.e., those which take as a premise the notion that discrete, independent, 
content-bearing mental representations form the basic building blocks of intelligence.)  
Bickhard, on the other hand, specifically frames his interactivist theory as a new approach 
to theorizing representations.  I believe that this apparent incompatibility is merely super-
ficial.  In the first place, Dreyfus does not deny the existence of mental representations; 
he merely denies that they are the fundamental components of cognition.  That is to say, 
he rejects representationalism, not representations.  Bickhard rejects representationalism 
too, only he calls it “encodingism” instead of “representationalism.” And since Bick-
hard’s whole project (with regard to representations) is to explain the processes that  
constitute them, he obviously agrees that they are not fundamental.  Rather, on his inte-
ractivist account, certain kinds of complex physical processes produce representations.  If 
my intuitions are correct, those complex processes are tantamount to Dreyfusian skills or 
know-how, and could presumably somehow produce representations for Dreyfus as well. 
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Bickhard’s model centers around a type of open thermodynamic system known 
as a “dissipative structure.”  Such systems are characterized by the fact that they 
operate at far-from-thermodynamic-equilibrium conditions and cease to exist if 
such conditions are not maintained (Bickhard 2004: 11).  Examples of such sys-
tems range from simple convection systems, such as those responsible for wind 
and rain, to the most complex systems in the universe—living organisms.  Fur-
thermore, within the class of far-from-equilibrium systems, a distinction can be 
made between those that require the explicit intervention of another system for 
maintaining its far-from-equilibrium conditions, and those which are able to some 
extent to maintain those conditions themselves (Bickhard 2004: 11).  As an exam-
ple of the former Bickhard points to a chemical bath, which requires that certain 
chemicals be constantly pumped into it in order to maintain its far-from-
equilibrium state; an example of the latter is a candle flame, which “maintains 
above combustion threshold temperature; it melts wax so that it percolates up the 
wick; it vaporizes wax in the wick into fuel; [and] in standard atmospheric gravita-
tional conditions, it induces convection, which brings in fresh oxygen and gets rid 
of waste” (Bickhard 2004: 11).  

Bickhard refers to systems—such as the candle flame—which contribute to the 
preservation of their own far-from-equilibrium conditions as “self-maintaining 
systems”.  Any such system is, by definition, in constant interaction with its envi-
ronment, because “self-maintenance is a(n emergent) property that is relative to a 
range of environments” (Bickhard 2004: 23).  For instance, in the case of the can-
dle flame, its self-maintaining processes will fail to preserve far-from-equilibrium 
conditions—whereby the system (flame) will cease to exist—if its environment 
changes in certain ways, such as there being no more wax or oxygen, etc.  There 
are, however, more complex systems than candle flames, and some such systems 
can interact with their environments in more complex ways. 

The candle flame has no options, but other systems do.  A bacterium, for example, 
might swim so long as it is swimming up a sugar gradient, but tumble if it finds itself 
swimming down a sugar gradient […] The swimming is self-maintaining so long as 
it is oriented toward higher sugar concentrations, but it is not self-maintaining if it is 
oriented toward lower sugar gradients.  Conversely with tumbling.  So, swimming is 
self-maintenant [sic] under some conditions and not under others, and the bacterium 
can detect the difference in the conditions and switch its activities accordingly; it can 
select between a pair of possible interactive processes that which would be 
appropriate for current (orientation) conditions (Bickhard 2004: 23-4).  

In other words, the bacterium can (inter)actively maintain its very process of self-
maintenance by distinguishing between variable environmental conditions—that 
is, by distinguishing between the presence of food (more sugar) and not-food (less 
sugar).  It possesses interconnected subsystems, each of which can behave in  
different ways depending on the states of the other systems.  This ability to  
(inter)actively detect what counts as the proper functioning of a system, given  
certain environmental conditions, is what Bickhard refers to as recursive self-
maintenance (Bickhard 2004: 24).  And it is this capacity that he suggests gives 
rise to cognition. 
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To see how this happens, consider the bacterium again.  We saw, above, that in 
order to select whether to swim or tumble, it must be able to differentiate between 
environments that make one or the other behavior self-maintaining.  Of course, we 
wouldn’t say that when swimming it must, therefore, know that it is moving up a 
sugar gradient.  How, then, can we explain what goes on when it detects environ-
mental conditions, and the result of that detection causes it to behave (i.e., to inte-
ract further with the environment) some way rather than another?  Bickhard’s  
response comes in two parts: first, the state of some subsystem (e.g., a subsystem 
that detects sugar) “implicitly define[s] the class of environments that would yield 
that state if in fact encountered in an interaction” (Bickhard and Terveen 1995: 
60); and second, some other subsystem (e.g., one which selects whether to swim 
or tumble) functionally presupposes that the environment is a certain way—based 
on the current state of the ‘first’ subsystem—and responds accordingly (Bickhard 
2004: 25).  The state of the first subsystem, that is, implies that certain environ-
mental conditions obtain (and that others don’t) in the same way that the mercury 
level of a thermometer reaching the notch marked “73 F” implies that it is seventy 
three degrees Fahrenheit (and that it is not forty three degrees Fahrenheit).  The 
second subsystem then acts based on the discrimination made by the first.  Bick-
hard calls this process, wherein one subsystem utilizes the state of another, func-
tional presupposition.  Thus on the interactive model one subsystem utilizes the 
state of another—the former functionally presupposes what is implied by the lat-
ter—to determine the type of behavior that will contribute to the maintenance of 
its own far-from-equilibrium conditions in a given situation.  This complex 
process is, for Bickhard, the foundation of intelligent behavior.  

While it is outside the scope of this paper to elaborate either Bickhard’s or 
Dreyfus’s picture more fully, I believe that we can already see a shared under-
standing of intelligence at work.9  For both theorists, intelligence is a matter, more 
or less, of acting skillfully to satisfy one’s needs and interests, and where doing so 
means interacting dynamically with the world in which one is fundamentally, in-
exorably embedded.  Indeed, it seems to me that the process described above, 
wherein a physical system maintains its own existence conditions by successfully 
discriminating between healthy and toxic environments and by tending toward the 
former, is skillful coping in its simplest form, that this is a description of Drey-
fus’s concept of skillful coping at a higher level of generality.  Furthermore, and to 
return to the question with which this essay began, I would like to suggest that 
Bickhard’s characterization of recursively self-maintaining physical systems is as 
good a definition as any of what physically constitutes a body. 

What is indispensable about Bickhard’s view is that it glimpses these funda-
mental components of skillful coping in even their most primitive incarnations.  
And Bickhard does so not only by pointing metaphorically to the sort of “lower” 
cognitive functioning which humans share with non-human animals, as Dreyfus 
does, but by elaborating how such primitive intelligence works and how “higher 

                                                           
9 I have argued at greater length for the parallel between Dreyfus’s and Bickhard’s concep-

tions of skillful coping and interactive cognition, respectively, in “Challenging the Bi-
nary: Toward an Ecological Theory of Intentionality,” my 2007 philosophy honors thesis 
at The George Washington University. 
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level” intelligence might plausibly arise out of it.  This is important because it en-
courages us to think about intelligence from the ground up, so to speak, rather than 
from the top down.  It gives us a way of thinking about building artificial intelli-
gence, instead of artificial human intelligence.  That is, it suggests why and how 
we ought to think about building simple artificially intelligent systems, rather than 
attempting to reverse-engineer ourselves.  In what remains, I will elaborate on this 
a bit, and suggest what I take it to mean, practically, for AI research. 

3   Three Considerations for Future Research 

Reading Dreyfus and Bickhard together leads to a generalized conception of the 
body as an open thermodynamic system with the capacity to contribute to the 
maintenance of its own existence conditions by interacting skillfully with its envi-
ronment.10  And while I am unable here to argue more fully and persuasively for 
this view, I would like to suggest that understanding bodies in this way brings cer-
tain important features of the relationship between intelligence and embodiment to 
the fore.   

First, it indicates that bodies and intelligence are not distinct things.  The claim 
that the body is fundamental to all facets of intelligent life is not merely the claim 
that bodies and intelligence are co-extensive, that wherever intelligence is found 
so too is there a body.  Rather, it is the much stronger claim that bodies are intelli-
gent.  The more or less discrete physical systems we call bodies are just the sort of 
physical systems with the capacity to interact skillfully with their environments.  
The distinction between bodies and intelligence is an analytical distinction—it re-
fers to two aspects of the same phenomenon (its physical properties and its skills 
or capacities).   

This is a point which seems to me to have been lost on many of those who take 
Dreyfus’s work very seriously.  Thus one finds AI researchers attempting to strap 
humanoid robot “bodies” onto complex computers, or conversely, trying to cap-
ture the dynamics of embodiment in complex digital models.11  In both cases, the 
body is understood as something that intelligence requires, a necessary feature 
which must be supplied or involved or made reference to, instead of being unders-
tood as what intelligence is.  But the point that Dreyfus is making in his work is 
precisely that such a conception is misguided, that intelligence and the body are 
inseparable, that they are two sides of the same coin, that they develop together in 
the world, that intelligent creatures are intelligent because they are embodied, and 

                                                           
10 It is worth noting that similar definitions have been put forward to describe life.  And in-

deed, for many of the reasons outlined above, I would not be surprised if artificial intel-
ligence and artificial life were developed simultaneously.  Put another way, I think truly 
artificially intelligent systems will be difficult to distinguish from living ones. 

11 The former is evident in work such as Rodney Brooks and Daniel Dennett’s “Cog” 
project, the latter in Walter Freeman’s “neurodynamic modeling.”  For detailed accounts 
of both of these approaches, as well as a general survey of the state of the art in  
“Heideggerian AI,” see Dreyfus, “Why Heideggerian AI Failed and How Fixing it 
Would Require Making it More Heideggerian,” op. cit.  
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as a result, that intelligence must be understood in terms of embodied activity in 
the world.12  For AI researchers going forward, then, the first point to consider is 
that artificial intelligence and artificial embodiment must be developed in tandem.  
“Hardware” and “software” cannot be understood as fundamentally distinct.  In-
stead, the very organizational structure of physical systems must be designed to 
produce intelligent behavior.  In order to develop truly intelligent systems, we 
must design physical systems whose raisons d'être are to cope with their environ-
ments.13   

Second, as the above suggests, this requires thinking about artificial intelli-
gence on a much smaller scale.  Instead of aiming for complex intelligent systems, 
researchers should try to build physical systems with small skill sets, but which al-
so have the flexibility to adapt and learn.  In this way, complexity can emerge out 
of simple intelligent systems.14  Genetic programming and “generative AI” seem 
to me to be promising avenues of research that approach AI in just this way.15  So 
too is the “enactive approach,” developed most prominently by Evan Thompson 
and Francisco Varela.  That approach offers a conception of the relationship be-
tween embodiment and intelligence similar to the one advocated here and has pro-
duced significant work in philosophy and cognitive science.16 

Finally, understanding intelligence and the body in the way I’ve described sug-
gests that AI researchers ought to be thinking not only about how intelligent crea-
tures are intelligent, but also about why they are intelligent.  As Dreyfus has 
shown, following Heidegger, meaningfulness and intelligence arise in the pursuit 
of interests, in relation to a world in which one is inexorably embedded—a world 
about which one has no choice but to care.  Bickhard’s conception of recursively 
self-maintaining systems brings this notion into even sharper relief: building be-
ings that understand the world—in whatever way they do—and that are able, 
therefore, to behave intelligently in the world, means building beings that need to 
be intelligent in order to successfully function.  This constitutive need for intelli-
gence is crucial to understanding intelligence as such.17  The body is what produc-
es this need, what anchors intelligent creatures in the world, what invests us in it, 
what makes the world relevant and significant to us, what makes it such that we 
have to cope.  Bodies, in a word, are why intelligence matters. 

                                                           
12 This is another way of describing what Merleau-Ponty calls “the flesh,” a notion which 

has undoubtedly shaped Dreyfus’s thinking.   
13 For a marvelous discussion of both theoretical and experimental work related to this idea, 

see Slawomir Nasuto and Mark Bishop’s “Of (Zombie) Mice and Animats” in this vo-
lume. 

14 For a helpful discussion of how this kind of emergence works, see Bickhard, “Emer-
gence,” in Downward Causation, ed. P. B. Andersen, C. Emmeche, N. O. Finnemann, P. 
V. Christiansen,   322-348. (Aarhus, Denmark: University of Aarhus Press, 2000). 

15 See Tijn van der Zant, Generative AI: A Neo-Cybernetic Analysis (Groningen: University 
Library Groningen).  

16 For an overview of the enactive approach, see Thompson’s Mind in Life: Biology, Phe-
nomenology, and the Sciences of Mind (Cambridge: The Belknap Press of Harvard Uni-
versity Press, 2007). 

17 See Nasuto and Bishop’s paper (op cit.) for more on the constitutive need for and drive 
toward intelligence.  
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Introducing Experion as a Primal Cognitive 
Unit of Neural Processing  

Oscar Vilarroya* 

Abstract. The aim of this manuscript is to introduce the notion of experion. This 
notion is proposed as the primal cognitive unit of neural processing. The proposal 
focuses on the fact that neural systems have evolved to characterize and act in the 
situation in which they are involved according to the needs and state of the sys-
tem, primed by past experience and biased by neurobiological predispositions. The 
proposal goes on to acknowledge a cluster of principles that characterize neural 
functioning by its cognitive openness, contingent specialization and selection, as 
well as cross-modality and heterarchical processing. The proposed framework as-
sumes these facts and hypothesizes that the basic unit is a neural event that holisti-
cally integrates all neural processes that take part in addressing the adaptive topic 
at issue. In particular, I have defined an experion as a neural controlled event with-
in which a particular neuroenvironmental configuration of contents are created to 
deal with the individual’s adaptive topic at issue. The specific nature of such con-
tents and its ability to address the topic at issue are a product of the deployment of 
the relevant associations with previous registers of such couplings channeled 
through the basic operations of the neural architecture. The evolutionary bottom 
line is that the neural system should not be seen as a system that represents reality, 
but a system that adapts to it, adjusting the agent to the environment in the best 
way to obtain its objectives: experiencing, and learning from it. 

 
 

The aim of this manuscript is to present the notion of experion, which was infor-
mally, but extensively, presented elsewhere (Vilarroya, 2002). This notion is pro-
posed as the primal cognitive unit of neural processing.  

My approach parts from the evolutionary fact that neural systems have evolved 
to characterize and act in the situation in which they are involved and exploits  
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evidence and constraints revealed by evolutionary neurobiology. Additionally, the 
approach inherits insights from other lines of research, such as empirical theories 
of perception, perceptual-based theories of concepts, sensorimotor contingencies 
research, situated cognition, cognitive linguistics, and embodied robotics. The 
proposal extracts from these trends what I consider to be insights on how a neural 
system works and how to model such a system to account for cognitive properties. 
In particular, the notion of experion focuses on the embedded and embodied 
coupling between the neural system and the environment, therefore assuming no 
divide between internal and external compartments. It is precisely in the context of 
these couplings, and in the way they are registered, that a primal cognitive unit 
should be characterized.  

The plan of the manuscript is the following. Firstly, I will present the evolutio-
nary conditions that should constrain any approach to cognition, which is followed 
by the neurobehavioral adaptations that such constraints have generally produced 
in extant biological species with a neural system. Then, I introduce a provisional 
cluster of neural processing phenomena that I characterize as principles of neural 
functioning for any nervous system. Even if such a set could be viewed as an  
uncontroversial piece of neuroscientific knowledge, the selection and characteriza-
tion of such principles clash with present models of cognition. The notion of expe-
rion is thus presented in the following section as the proposal that tries to improve 
the characterization of how neural systems, driven by evolutionary constraints, ac-
count for the observed neurobehavioral adaptations. 

1   Evolutionary Constraints 

The proposal presented here must be understood as part of evolutionary biology. 
Evolution through adaptation is the guide for understanding and modeling cogni-
tion. I do not include here all of the evolutionary tenets that are relevant for my 
proposal. The standard evolutionary theory presented in any evolutionary textbook 
will suffice.  

However, my approach should be distinguished from some applications of evo-
lutionary theory to cognitive science, especially the trend known as evolutionary 
psychology (Barkow, Cosmides, & Tooby, 1995). The point of disagreement is 
what I believe to be fundamental constraints for characterizing extant neural sys-
tems. I argue, in contrast to evolutionary psychologists, that psychological me-
chanisms need not be specially designed to solve the adaptive problems for which 
they were selected (Vilarroya, 2001; Vilarroya, 2002). The evolutionary approach 
to the notion of adaptation does not imply the concept of optimal design. Evolu-
tionary optimality only states that natural selection favors the trait that maximizes 
the organism’s fitness. Indeed, the design of neural systems is not necessarily 
shaped by the criterion of optimality, but by that of what I call “bounded functio-
nality”. Bounded functionality concerns the functional paths driving to solutions 
to adaptive problems, and considers that adaptive value and design must be con-
ceptually separated (Vilarroya, 2001).  
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According to bounded functionality, neural systems should be characterized by 
taking into account a number of constraints that shape the functional paths to 
adaptations.  Two bounded functionality constraints are pertinent here. The first 
constraint states that the solution to any adaptive problem has to take into account 
the resources available to the system before the adaptive problem appeared.  

 

The bricoleur constraint: Evolution favors adaptations based on pre-
vious materials and processes. 

 

On the other hand, the second constraint reads:  
 

The satisficing constraint: Evolution favors adaptations that maximize 
the cost/benefit tradeoff. 

 

Transferred to evolutionary biology, the term "satisficing" (Simon, 1981) refers a 
viable alternative that satisfies the adaptive goal: the solution to an adaptive prob-
lem lies where the adaptive value is maximized.  Thus, there is no assumption that 
the mechanism accounted for the adaptation is also the optimal design to solve the 
concerned problem. 

In sum, the brain cannot be seen as a seat of optimal processes and systems ad-
dressing particular problems, but as a set of suboptimal, redundant and approx-
imate systems, subsystems and components, mostly not addressing the problems 
that are supposed to solve, but solving them as secondary effects of the engaged 
processes. 

2   Neural-Behavioral Adaptations  

In a dynamic context, the minimal function for the neural system is to help the in-
dividual to get from the present moment into the following one, satisfying the sys-
tem’s needs; nothing more than this. What happens in the neural system within the 
framework of a concrete situation is what we need to understand about the brain to 
characterize it. We could in fact understand the function of the nervous system to 
characterize the present situation, according to the needs of the system (what hap-
pens now that it is relevant to me?), and act upon it selecting the most appropriate 
action, according to the needs of the system (how do I get what I want?).  

The evolutionary path has yielded a human nervous system with a number of 
particular adaptive strategies to reach such goals, for example:  

Swiftness: Adaptive behaviors show a preference for “quick and dirty” responses, 
which are selectively more advantageous than only precise but deferred actions, 
because it is preferable to have false positive behaviors rather than waiting to have 
all the necessary data, but too late. 

Redundancy: Evolution has favored nervous systems that use many different cues 
or components to implement some functionality. The excess of energy and re-
sources that this implies is compensated by the selective advantage of having re-
dundant behaviors when there is some failing process or absent stimuli.  
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Anticipation: Evolution has favored responses that prepare the animal to face the 
situation in which it is going to be involved. Traditionally neural systems’ organ-
isms were viewed as stimulus-driven, reactive systems, namely yielding behaviors 
as a response or reaction to environmental conditions and internal needs. Yet, pre-
sently the widely held idea is that neural organisms are characterized as to-be-
attained goals’ agents, namely, pro-active agents that can select an action whose 
anticipated effect is considered to be beneficial. 

Flexibility: Evolution has favored neural systems that are capable of improving 
pre-established behaviors, even if it has been a very difficult property to be at-
tained in evolution. It requires a sophisticated system that is able to characterize 
the relevant elements of the situation at hand and new ways to address its  
demands.  

Situatedness: Adaptive behaviors are adjusted for the specific environments where 
they are deployed, involving real time engagements, in real-world surroundings, in 
interactions with the environment, connected to goal-oriented actions, and some-
times immersed in social contexts (Smith, 1999). All of this has prompted  
evolutionary pressures on nervous systems to be sensitive to the system’s re-
quirements contextualized to a certain situation of the individual and the environ-
ment (Smith, 2005).  

3   Neural Processing Principle 

How has evolution shaped neural systems to show such strategies? The filter of 
natural selection basically operates on neural mechanisms that produce behavior. 
Such mechanisms have certain regularities that have been acquired and maintained 
along the phylogenetic line of all animals with a nervous system, because they 
have reliably produced the previous neurobehavioral adaptations. I will now 
present a proposal of a cluster of such regularities that characterize extant neural 
systems, especially those in mammals. These principles are not new in themselves. 
They are implicitly or explicitly acknowledged in neuroscientific research. How-
ever, they are not always considered as principles, nor are they always clustered 
together; rather, some are usually considered as a particularity, variety or anomaly. 
My view is that a great deal of models fail to satisfy such principles.   

The cluster presented has no ambition of being sufficient, but it does of being 
necessary; in other words, other principles may be revealed in the future, and 
could be added to those presented here, but all are part of the neural machinery.  

3.1   In-Focus  

The neural system selectively and contextually processes part of the all the availa-
ble signals in order to manage the solicitation of the situation in which it is in-
volved.  The wealth of signals processed at any given time in a nervous system are 
not processed equally. The state of the system and the specific circumstances of a 
certain situation prompt some type of data to be selected as “more relevant”. Clas-
sically this has been attributed to attentional systems’ functions.  
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3.2   Ad hoc 

Functional specialization suggests that there are specialized neural systems that 
process specific functionalities, and not others, and that this specialization is ana-
tomically and/or functionally segregated within the neural system. This implies a 
possible association between type of processes and neuroanatomical circuits. In 
this sense, functional specialization has been associated with models of modulari-
ty, where each module, or neuroanatomical region, corresponds to a certain func-
tional specialization. There are many versions and flavors of modularity, from a 
massive modularity hypothesis (in which the functional specialization is enclosed 
in a module strictly involved in the functional domain in question), to a moderate-
ly modular, as well positions defending only peripheral modularity (input func-
tional modules) to central modularity proponents (Barrett & Kurzban, 2006). 
However, despite years of cognitive neuroscience it is difficult to uniquely identi-
fy particular neural substrates with particular tasks, and difficult to set particular 
operations to single areas (Anderson, 2010; Uttal, 2001). Complex operations are 
often processed in multiple areas, and individual brain areas often contribute in the 
analysis of more than one type of content; complex operations might imply new 
configurations of certain connections, rather than a wholly autonomous circuitry 
(Anderson, 2010). It is thus unclear that regions are embedded with special pur-
pose processes, mechanisms, algorithms oriented to the specific specialization 
concerned, namely visual, auditory or in those classically considered associative 
areas, such as linguistically specialized areas. At most, the functional role of any 
area of the brain is defined largely by its connections (Passingham, Stephan, & 
Kotter, 2002).  

My proposal is to assume a minimal level of functional specialization, where 
nervous systems have specialized circuits, because some of its elements (e.g. sen-
sors) are physically constrained to process some sort of data (e.g., electromagnetic 
waves) and because some circuits undertake some types of specific tasks (e.g. vis-
ual), devoting some fixed resources to them. Physically constrained sub-systems 
(sensory captors) have evolved to reduce the degrees of freedom of the all the 
available types of data, and be sensitive to elements of the environment that have 
been adaptively relevant.  

3.3   Transversal 

Classically, each sensory modality and each motor domain is treated in isolation, 
as if each modality processed its signals without relevant interactions with other 
senses. However, the transversal principle assumes that interaction among differ-
ent modalities is not only a common phenomenon in the brain, but it is also prere-
quisite for all neural processes. The models of crossmodal integration are beyond 
the notion of purely feedforward convergence between separate signal sources, 
and require a functional integration from very early stages of neural processing 
(Stein & Stanford, 2008; Shams & Kim, 2010; Pulvermuller, 2005). Indeed, func-
tional integration is carried by feedforward pathways that support multisensory  
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integration at early stages in the cortical processing hierarchy (Giard & Peronnet, 
1999; Ghazanfar & Schroeder, 2006). These observations that many areas that 
were previously classified as unisensory (motor) contain heteromodal (sensory, 
motor, etc.) neurons are supported by studies showing connections between un-
isensory cortices (Bizley, Nodal, Bajo, Nelken, & King, 2007; Cappe & Barone, 
2005; Rockland & Ojima, 2003; Meredith, Keniston, Dehner, & Clemo, 2006) and 
by the many imaging studies that reveal heteromodal activity in these regions. In-
teractions occur also between sensory and modulatory circuits at very early stages, 
and between classically distant functional domains (Glenberg & Kaschak, 2002; 
Glenberg et al., 2008; Ghoshal, Tomarken, & Ebner, 2011). In short, crossmodal 
integration seems to be the rule rather than the exception.  

3.4   Heterarchical 

Evidence indicates that what is classically considered as higher cortical areas in 
the neural processing affect the content of sensory-motor systems directly (Repe-
rant et al., 2006). It has been long known that there are massive feedback path-
ways projecting from “higher”, associative, cortical areas to “lower”, primary,  
cortical areas; yet these facts have been disregarded in models of neural 
processing (Foxe & Schroeder, 2005). The classically considered primary cortex is 
not a mere relay station where signals are processed and re-directed to other parts 
of the brain. There is an active interplay between the brain’s so-called early sen-
sory areas and the higher associative centers (Gilbert & Sigman, 2007). Many  
examples are already recognized (de Lange, Jensen, & Dehaene, 2010; Cardin, 
Friston, & Zeki, 2011; Kherif, Josse, & Price, 2011; Lupyan, Thompson-Schill, & 
Swingley, 2010; McMains & Kastner, 2011; Teufel et al., 2009; Yoshida & Katz, 
2011). All of these results reinforce the idea that brain processing cannot be seen 
as a strict bottom-up or top-down process in which each stage is independent of 
the next. Neurobiological research suggests that the processes involved in signal 
processing are so intermingled that there is controversial value in trying to divide 
them up neatly into compartments. This does not mean that there is no sequential 
processing; rather, what it suggests is that neural processing has to be taken as a 
holistic process comprehending different components and functional specializa-
tions and the interactions between all of them. The nervous system processes sig-
nals at different stages, though these stages do not imply strict boundaries, nor  
sequential processing; namely, there are no strict boundaries between sensory, 
perceptual, cognitive and motor stages, nor is there a bottom-up or top-down  
hierarchy. 

3.5   Modulated 

The neural system is endowed with specific mechanisms that regulate the process-
ing of neural signals as a function of the endogenous significance of such data. 
Such modulatory functions have the property of biasing, controlling and modify-
ing neural processing endogenously, through reward/punishment, inhibi-
tion/activation, and other similar constraints. The key point is that modulatory  
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actions change the role that a signal has in the process in which takes place, all 
else being equal; namely, different modulatory influences can completely change 
the role that a signal plays in the same environmental situation, with the same 
computational resources (Briand, Gritton, Howe, Young, & Sarter, 2007).  

3.6   Open  

As in any other biological system, the brain seems to be an open system in interac-
tion with the environment; there is an interchange of matter and energy between 
the brain and the environment. However, as a cognitive system, the brain is gener-
ally considered to be a closed system. Many views defend the idea that we do not 
require the environment to understand the contents of the brain’s workings (Llinás 
& Paré, 1996). According to these views, sensory experience or representation are 
not created by incoming signals from the world, but by intrinsic, continuing 
processes of the brain. My view is, in contrast, that the brain is a cognitively open-
system. Although neural activity is a necessary part of what enables cognition, no 
internal activity suffices for cognizing (Noe ̈ & Thompson, 2002; Noë, 2004; 
Thompson & Stapleton, 2009; Robbins & Aydede, 2009). Moreover, the environ-
ment does not only have an active role in the internal activity of the neural system, 
but also that the neural system and the environment form a coupled system. The 
studies carried out under the label of sensorimotor contingencies and situated cog-
nition explore such a principle (e.g. (O'Regan & Noe, 2001; Thompson & Staple-
ton, 2009; Hills, Todd, & Goldstone, 2008; Robbins & Aydede, 2009;   Smith, 
2005; Yates & Kerman, 1998; Black, Paloski, Doxey-Gasway, & Reschke, 1995; 
Mason & Brady, 2009). 

4   Experion  

My view is that we lack a way to characterize the preceding principles and neuro-
behavioral adaptations within the context of the activity of a neural system. I pro-
pose the notion of experion to that end. Let me begin with its definition: 

 

Experiondef: A neurally controlled event within which a number of neu-
ro-environmental contents are created that help in dealing with the indi-
vidual’s adaptive topic at issue.  

 

By event I mean particular temporally-bounded situation. By neurally controlled I 
assume that it is the neural system which establishes the beginnings and endings 
of the event, and monitors its evolution. By neuro-environmental I consider some 
element or property that can only be understood as extended in the coupling that a 
particular neural system establishes between itself and a particular environment. 
The neuro-environmental qualification implies that the contents of an experion can 
only be characterized in the specific interaction between the particular neural sys-
tem and the particular environment. In sum, an experion is a sort of neuroenvi-
ronmental state of affairs.  
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4.1   Experion Topic 

In every situation there is something happening in which the individual is in-
volved: eating, playing, mating etc. Such activities can be characterized as an in-
stance of an adaptive interaction between the individual and the environment in 
which the agent deals with the environment to get what it wants. This activity is 
easily related to the survival and reproduction of the individual. The topic of the 
situation, as I will call it, is the adaptive goal that guides, defines and creates bias 
in all activity of the system.  

4.2   Experion Temporal Dimension 

Experions are topic-driven neural events with temporal boundaries, with begin-
nings and endings, even though what constitutes a boundary is not yet neurobio-
logically well-established, nor will it be able to be rigidly individualized. An expe-
rion is every topic-driven event which the neural system deals with, and therefore 
there are no pre-established differences between types of experions. Most proba-
bly the systemic neural synchronization properties of the brain will have a critical 
role to play in maintaining and establishing the duration of a particular experion. 
However, the boundaries of an experion will surely extend the limits of a particu-
lar synchronization and will be constrained by influences from modulatory sub-
systems.  

4.3   Experion Extension 

The experion framework assumes that there are properties exclusively created in 
the interaction between the neural system and the environment. Take the example 
of color. Color appears through the combination of three factors: the wavelengths 
of the light reflected by the objects, the lighting conditions, and the neural system. 
Color is thus a coupled property. Take also the example of registering a pin code 
by memorizing the movement of the fingers on a number pad, but not the number. 
The combination of movement and the arrangement of the pad create the code; we 
can say that the code is not really anywhere, but that it is in the conjunction be-
tween the pad and the movement. Generalizing, the contents of an experion exist 
only as a coupling that includes part of the environment and the neural system, ex-
tended along the continuum between the environment and the neural system. This 
idea is germane to the “extended mind” and “active externalism” approaches (see, 
for example, (Menary, 2010)), but in contrast to those views, I defend that all ex-
perion contents are coupled. 

4.4   Experion Processes  

Experions are decomposable, provided that they are made up of different neural 
processes. In principle, an experion comprehends all the processes that take part in 
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addressing the topic. There is no pre-established property or feature that indicates 
what process is or is not part of an experion; the key factor that establishes its in-
clusion in an experion is its effective contribution to addressing the topic at hand. 
Accordingly, neural processes have to be characterized in relation with the expe-
rion in which they take part.   

I assume that the functional architecture neural system is made up by a number 
of basic operations. As I understand it, a basic operation corresponds to a set of 
signal transformation steps subserved by a neural circuit which contribute to some 
functionality. A functionality can be loosely understood as a minimal neuro-
environmental competence, such as, for example, the different strategies that are 
deployed to perceive depth: motion parallax, motion depth or stereopsis. Every 
neural circuit has a specific signal transformation procedure that depends on the 
nature of the circuit architecture, not on the functionality it contributes, even if 
what singles out a basic operation is the functionality it consistently contributes to. 
Note though that the same neural circuit can be recruited to more than one func-
tionality. Thus, two different functionalities can have in common the same neural 
circuit, and the same circuit can contribute to different functionalities. Moreover, a 
basic operation will be always submitted to a topic fulfillment, and thus, coordi-
nated with many other operations which may modify the characterization of the 
functionality. Thus, the characterization of the functionality of a specific neural 
circuit will be always a work-in-progress characterization in the context of the 
specific topic fulfillment in the particular situation involved.  

Yet, even if the specific characterization of the functionality is contextual, we 
can safely assume that the number of basic operations is in principle universal for 
the neural system of each species. The catalog of neural circuits associated to a 
specific signal transformation set depends directly on the genome of the species, 
and the minimal functionalities they face in their environments are usually the 
same. On one hand, every neural system has its potential neural circuits pre-
established, in the same way that it has its muscular or hormonal structures. Ob-
viously, the unfolding of the genome has to be triggered by environmental factors, 
but the catalog of possible circuits is determined by genetic background. On the 
other hand, environments do not change their basic demands, such as depth, color, 
texture, etc., for a species, and when they do, they are usually a minority.  

4.5   Experion Contents 

As said, the functional architecture of the neural system is made up of a number of 
basic operations. These operations are deployed in particular situations of the in-
dividual to deal with the topic at issue in a particular environment during a par-
ticular time frame of reference. It is within this context that the neural system 
creates a number of elements in the interaction with the environment, taking profit 
from the basic operations, the environment and memory, in order to satisficingly 
deal with the topic at issue. And it is within this context that the neural code gets 
its role: it is the role that it plays in construing the experion contents to which it 
contributes.  
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What elements can be considered to be contents of an experion? As I have al-
ready advanced in other sections, the general idea is that the contents of an expe-
rion consist of all the elements that satisficingly deal with the topic at issue. By 
element I understand here as the result of the deployment of basic operations and 
their interconnection and the coupling with the environment that can be seen as a 
component of the processing. This definition is so liberal that it probably allows 
too many things to be considered as experion contents. However, at this moment 
we only have the possibility of sketching such a definition.  

However, can we say anything about the nature of experion contents? Even if 
we lack the tools to characterize them comprehensively, it is possible to identify 
some of its properties. First, experion contents are grounded and constituted by 
processes that occur within the context of an experion through the interaction of 
the neural system, the environment and memory. Thus, experion contents are not 
the product of specific pre-established (genetically programmed) processes of the 
neural system. The functional architecture of a neural system lacks pre-established 
and autonomous processors of specific meanings, or specific categorization or al-
gorithmic programs that have been traditionally considered part of a “cognitive 
machinery”, such as specific pre-established linguistic algorithms that treat certain 
signals through a set of linguistic operations. Take, for instance, the putative 
“edge” content, which may be processed in visual perception. “Edge” is not part 
of a pre-established process that is programmed to identify “edges” and that will 
identify edges just when the right environmental features appear; rather, the 
“edge-in-this-experion” is built up in a singular experion contrasted with previous 
relevant experions that have been accumulated and organized, and where the roles 
that the process has been playing in those experions result in what, from a theoret-
ical third-point of view, we could call “edge detection”.  

Second, an experion content cannot be characterized by itself, but in integration 
with all the other contents in the experion. It is precisely through the configuration 
of contents that the neural system can deal with the topic at issue in a unified 
manner. The integration of all the contents of an experion is how the competence 
of a neural system deals with the topic, and the competence of a specific content 
will correspond to the role it plays such a configuration. For example, the inverse 
optic problem refers to the fact that retinal stimuli are underdetermined with re-
spect to the world. Thus, a putative content, such as line orientation of a geometri-
cal figure, may have a different configuration depending on other contents of the 
visual context (Wojtach, Sung, & Purves, 2009)). 

Third, experion contents are constituted by a granularity resulting from the dif-
ferent dimensions of the neural processing principles. In other words, if the 
processes underlying the experion contents are cross-modal, heterarchical, cogni-
tively open, contingently specialized and selective, then the contents will inherit 
one, some, or all of these dimensions in their constitution, and will have to be tak-
en into account in their characterization. Take what we could call the content of 
“spatial embeddedness”, involving self- as well as extrapersonal perception, with 
processing related to the whole-body position and motion in space and to the 
changes of the environment relative to the individual. This spatial context is con-
stituted by different dimensions, concerning external objects (allocentric reference 
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frame), to the body (egocentric reference frame), or to gravity (geocentric refer-
ence frame), all of them contributing in varying degrees different spatial embed-
dedness situations. Each dimension is subserved apparently by a modality. In this 
sense, visual cues yield information about the orientation of elements in space and 
participate in the allocentric frame of reference. Secondly, somatosensory cues 
provide information about relative head, trunk and limb position in space and par-
ticipate in the egocentric frame of reference. Finally, the vestibular system, which 
processes linear and angular accelerations, yields an invariant frame of reference, 
given by the direction of gravity, which is the basis of the geocentric frame of ref-
erence (Borel, Lopez, Peruch, & Lacour, 2008, p.377). In sum, the “spatial em-
beddedness” content shows a clear granularity that inherits the features of neural 
processing. Yet, even if there is a preference of a modality for a spatial dimension, 
visual, propocieptive and vestibular modalities contribute in a certain way to all of 
the different embedded dimensions, thus showing a strong cross-modal character. 
Moreover, the absence of one of the modalities, for example after vestibular loss, 
changes the way the other dimensions are integrated (Borel et al., 2008). Addi-
tionally, spatial embeddedness is a content in which priors must be incorporated, 
provided that practice can change the granularity of the content. As for openness 
in the embodiment dimension, it is manifested in many ways; for instance, in hu-
mans the sensation of being upright is determined primarily by balance dynamics 
generated by balance control, so that in actual fact upright perception is more ac-
curate during unbalanced postures; in short, as it has been summarized ‘‘we are 
most aware of our place in the world when about to fall’’ (Bray et al., 2004).  

Finally, experion contents should be seen as contributors to one, some, or all 
the neurobehavioral adaptations of neural systems. This means that their characte-
rization must be able to identify the functional character of such a contribution, 
and will be constrained by the adaptative strategy they show. In the spatial em-
beddedness example, situatedness is satisfied because the content is sensitive to 
each situation; anticipation is fulfilled because the situation constrains the type of 
processing; flexibility is observed because the ongoing efficiency modulates the 
ongoing type of processes deployed; swiftness is accorded with “quick and dirty” 
solutions when required, and finally redundancy is coordinated with other me-
chanisms that are deployed in the fine tuning of the spatial response.  

For all the previous features, I contend that experion contents are going to be 
characterized in a very different way than the usual entities posed in representa-
tional models of cognition. Yet, whatever the form and nature, the key point is that 
cognitive competence will have to be explained through experion contents, and 
such contents will be constitutive of such competence.  

5   Memory 

Let us call experiogram the trace which preserves the relevant activity of the 
neural system in the original experion, and let us call memogram the complete set 
of experiograms of an individual. An experiogram can be individualized and 
maintained as a particular register, even if connected to the rest of the memogram, 
or dissolved into similar experiograms if it has not been especially stamped by 
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modulatory inputs. In both cases, the experiogram can be activated later as a 
background context in future experions, but in case of being individualized, it can 
also be activated directly, and thus its activation in a certain sense relives the orig-
inal experion. However, the proposal assumes that all the relevant activity related 
to an experion should be registered in the memogram, which implies astronomical 
registering capacity. Let us assume that in a single day we have thousands of ex-
perions, suggesting that the order of magnitude for a memory system should be in 
the range of millions for experions, and in billions for connections. My view is 
that the open-ended capacity to register experiograms can be accommodated by 
the practically infinite combinatorial power of the 100 billion neurons. There are 
indeed studies that consider that the capacity of memorization, in bits, is at an or-
der of magnitude of 108432 (Wang & Wang, 2003). Additionally, not all experions 
will be singular. The majority of them will be processed and fused with previous 
ones and thus lose singularity, thus reducing the need for memory resources.  

Experiograms are modulated. Modulatory systems that deal with reward, mood 
and drive constraints are responsible for the emphasis that each experion gets, and 
therefore, the strength with which they are registered as experiograms, or the ab-
sence of emphasis that dissolves them within the memogram.  

Experiograms are dynamic. Neural processes cannot be considered to be fixed 
states; they are continuously changing, modified by relevant ongoing activity and 
evolvable in their structure and connections. Thus, fixing a specific experiogram 
as a neural state is no more than a simplification, which is a necessary shortcut to 
explain its properties. It would even be reasonable to avoid using the notion of 
“state” altogether to refer to fixed elements of the neural system.  

Experiograms are holistic, i.e., they cannot be segregated into types as percep-
tual or cognitive, nor in different dimensions of episodic, semantic, or even  
declarative versus implicit. In an experion-framework all memory is based on ex-
periograms, and the differences that have been observed until now between the 
different dimensions (declarative or non-declarative; implicit or explicit; semantic 
or procedural), correspond only to the way memory is probed. The only distinc-
tion that can be maintained is between working and long-term memory. This does 
not mean that there are not different specialized computations registered within an 
experiogram (e.g. verbal loops or procedural programs), but that the role they play 
is dependent on the activities of the other specialized processes implicated in the 
original experion. The holistic nature is a critical property, because all the cogni-
tive properties brought about from such architecture must be filtered through the 
memogram of the system, including all the different components of an experion. 
All knowledge is grounded in the memogram. 

Experiograms are not singular engrams in a particular area of a brain, but they 
are distributed along the circuits and groups that registered the original experion 
similar to classical models (e.g. Fuster, 2006): Memory is grounded by synaptic 
modulation of connections between neuronal assemblies synchronically activated, 
however distant they may be from one another. 

Experiograms are in cognitive parity with an experion. If we consider that the 
experion is a coupled entity, that is, it comprehends not only the activity of the 
neural system, but also the environment, the experiogram is only a partial record 
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of the experion. At first sight, then, the experiogram lacks an essential part of the 
experion and thus cannot be taken as a substitute of the original experion. Howev-
er, experiograms are experion-satisficing; namely, they satisficingly preserve the 
relevant properties of the experion. This is what I will call:  

 
Mnemcy: The capacity to reproduce the relevant properties of an experion. 
 

This is the key property of the neural system as a cognitive machinery. The critical 
functionality of the memory system is to fix the activity that can reproduce the re-
levant properties of the original situation. Indeed, experiograms implement 
mnemcy by registering the activity that is capable of reenacting the critical 
processing of the system during the experion that induced the experiogram. As the 
movement over a pad is sufficient to reenact a pin code, the experiogram re-
enactment gets the system back into the original situation where the experion oc-
curred, and reproduces the relevant original properties of the system. By relevant I 
understand here as the capacity of the system to reproduce an activity which is on-
ly compatible with the original experion. Indeed, it is important to note that 
mnemcy is not a fixed property; rather, it is a maturational property of the memo-
gram. At the beginning, when an experion has very few experiograms to be 
grounded (and this happens very often at the first stages of life, but also with any 
new and completely original experion), the reenactment of its experiogram will be 
compatible not only with the original experion, but also with a set of experions 
that have very few to do with the original experions. When a baby sees an object, 
an experion is created; the reenactment of its experiogram is probably compatible 
with many different objects of many different forms. It is only after the accumula-
tion of experiograms and their associations that the set of possible experions com-
patible with a certain experiogram will get its cognitive parity, and thus show 
mnemcy satisficingly. 

However, mnemcy depends on the consistency of the environmental stimuli to 
be efficient. In the example of the pin code and the pad movement, the register of 
the movement is sufficient to preserve the number, without remembering it expli-
citly. Yet, this only happens ceteris paribus, because if the distribution of the 
numbers changes on the pad, then the number preservation is lost. Likewise, if the 
properties of the world changed, then the experiogram would lose its preserving 
capacities. In this sense, for example, if we transferred the trace into another brain 
with a different body properties, say, with three arms, four eyes, or asymmetric, 
then the trace would lose its mnemcy, although it could take a short time to as-
sume it (see Guterstam, Petkova, & Ehrsson, 2011). 

The critical difference that this property establishes with a classical system is 
that the register, the experiogram, does not represent the experion or its contents; 
rather, the contents are dispositionally implied in the register. In the example of 
the number and the pad, the number code that is reproduced in the reenactment of 
the motor program over the pad is not represented, but dispositionally implied in 
the trace. It will be reproduced under a set of circumstances, including the pres-
ence of a pad, with a certain configuration. Note also that the dispositionally  
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implied contents cannot be “identified” or “extracted” from the trace. Take the  
example of phantom limbs. We could say that the phantom-limb feeling is the ac-
tivation of experiogram whose re-enactment dispositionally implies the limb that 
would fit the body for that individual. Yet, we cannot extract the limb properties, 
its volume, form and movement from the register. Indeed, experiograms do not 
contain in each part of the distributed trace information about the whole experion; 
rather, the whole experiogram, when active, brings about an activity that is only 
compatible with a specific environmental and systemic configuration.  

6   Conclusion 

In this manuscript, I have presented a new framework based on the notion of expe-
rion that accounts for the primal cognitive competence of neural systems. The 
proposal focuses on the fact that neural systems have evolved to characterize and 
act in the situation in which they are involved according to the needs and state of 
the system, primed by past experience and biased by neurobiological predisposi-
tions. The proposed framework hypothesizes that the basic unit is a neural event 
that holistically integrates all neural processes that take part in addressing the 
adaptive topic at issue.  

The evolutionary bottom line is that the neural system should not be seen as a 
system that represents reality, but a system that adapts to it, adjusting the agent to 
the environment in the best way to obtain its objectives: experiencing, and learn-
ing from it, by memorizing and transferring its relevant experiences. This allows 
us to identify what the mark of the cognitive corresponds to in extant neural sys-
tems, by considering a cognitive system any system that is capable of: 

 
a) Experience: The capacity to establish a set of contents in the environ-

ment-agent coupling which are relevant for the agent’s survival and re-
production. 

b) Memory: The capacity to register the neural activity that preserves the 
contents of the coupling. 

c) Association: The capacity to establish relevant connections among par-
ticular registers.  

d) Learning: The capacity to modify new couplings by relevant registers. 
 

Among many other things, this suggests that probably the processes that neural 
systems possess have evolved very little and that the differences have more to do 
with increased computational capacity -brains with more neurons and connec-
tions-, and with more integration, coordination capacities, rather than with new 
processes. The only innovations in the humanoid line would be biotechnology, 
such as a vocal tract that is well built for maximizing the number of different 
sounds it can produce, redeployment of previous processes (Anderson, 2010), me-
tacognition, and cultural technology, such as language. 
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The Frame Problem 
Autonomy Approach versus Designer Approach 

Aziz F. Zambak* 

Abstract. “Yes, but you will never get a machine to do X” This is a commonsen-
sical objection to AI in which X refers to the main problems of AI such as pattern 
recognition, creativity, free will, autonomy, systematicity, understanding, learning 
etc. The frame problem is at the intersection of all these problems. In AI, the reali-
zation of X depends on the solution of the frame problem. The frame problem has 
three aspects namely, metaphysical, logical, and epistemological. Three aspects of 
the frame problem consider the issue from a designer point of view. The frame 
problem is not the problem of a machine intelligence designer but the problem of 
the machine intelligence. We propose three steps in order to build an autonomous 
approach to the frame problem. These steps are (1) the agentification of the frame 
problem, (2) a control system approach, and (3) a trans-logical model peculiar to 
AI. Each step towards building an autonomous approach to the frame problem de-
pends on each other. 

1   Introduction 

In artificial intelligence (Hereafter, AI), it is difficult to situate environmental data 
in an appropriate informational context. In order to construct machine intelligence, 
a strategy of reasoning should be developed for adapting data and actions to a new 
situation. That is to say that if we want to attribute an agentive character to ma-
chine intelligence, we have to solve the frame problem. The frame problem is the 
most essential issue that an AI researcher must face. The possibility of solving the 
frame problem means the possibility of constructing machine intelligence in an 
agentive sense. The frame problem is a litmus test for the evaluation of theories in 
AI. In other words, the frame problem is the major criterion for understanding 
whether a theory in AI is proper or not. In several of his writings, Dreyfus  
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considered the frame problem as a major challenge to AI. According to Dreyfus 
and Dreyfus (1988: 105), computers, designed in terms of the classical AI theory, 
do not have the skills to comprehend what has changed and what remains the same 
because computers are the operators of isolated and pre-ordained data-processing. 
The frame problem shows the necessity of having an agentive approach to 
thought, cognition, and reasoning. It implies the necessity for an efficient informa-
tional system that provides machine intelligence with accessible and available data 
for use in the world.  

2   Three Aspects of the Frame Problem 

What is the frame problem? Simply stated, the frame problem is about how to 
construct a formal system (e.g., machine intelligence) that deals within complex 
and changing conditions. The main issue behind the frame problem is to find a 
proper way to state the relationship between a set of rules and actions. It is not 
possible to find an exact definition for the frame problem. We cannot find a defi-
nition accepted by all philosophers and AI researchers. The frame problem has 
various definitions. This variety is caused by divergent views with regard to the 
categorization of the frame problem. It is possible to categorize the frame problem 
under three main groups; namely, metaphysical, logical, and epistemological.  

2.1   The Metaphysical Aspect of the Frame Problem  

The Metaphysical Aspect of the Frame Problem is about practical studies con-
ducted in order to find and implement general rules for an everyday experience of 
the world. These practical studies should include spatio-temporal properties of en-
vironmental data. How to update beliefs about the world when an agent comes 
face to face with a novel (or unknown) situation is part of these practical studies. 
Cognitive science, especially drawing information from domains of an agent’s 
cognitive actions, is seen as a part of these practical studies. For example, pattern 
recognition can be seen as a metaphysical aspect of the frame problem. There are 
many descriptions that can be considered as a metaphysical account of the frame 
problem. For instance, Janlert (1988: 12) sees the frame problem as a metaphysi-
cal challenge because the frame problem is not concerned with the instrumental 
adequacy of representation but, rather, concerns the form and the internal working 
of the representation. Janlert (1988: 33) states: “I think that finding and imple-
menting the adequate metaphysics is a promising approach to the frame problem, 
as well as an important key to successful modeling in AI in general.” Janlert 
(1988: 8) mentions three principles that are significant for the analysis of the 
frame problem: “1- The frame problem is a problem of modeling, not of heuris-
tics…2-The frame problem is not a question of content, but of form…3- The 
choice of suitable form depends on the problem world –computational considera-
tions will not suffice.” Hendricks (2006: 331) describes the frame problem as a 
practical problem: “It [the frame problem] concerns with how we retrieve the right 
knowledge at the right time. What counts as the right knowledge at a certain time 
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is fixed by the goals, interests and desires of the agent.” Hendricks (2006: 317) 
considers the frame problem to be a useful tool for some research topics in  
cognitive science: “When we figure out how human beings effortlessly recover in-
formation relevant to their present conditions, we will have solved it. In the mean-
time the frame problem is a useful tool for helping philosophers and cognitive 
scientists explore various models of human cognition.” Harnad (1993) defines the 
frame problem as a symbol-grounding problem which is about attaching formal 
symbols to the surrounding environment. The metaphysical aspect in Harnad’s de-
finition of the frame problem can be seen in his understanding of cognition as ca-
tegorization. Raphael mentions the importance of practical studies and heuristics. 
Raphael (1971: 161) describes the frame problem as a heuristic issue: “the frame 
problem is a problem of finding a practical solution, not merely finding a solution. 
Thus it resembles the famous traveling salesman problem or the problem of find-
ing a winning move in a chess game.” 

2.2   The Logical Aspect of the Frame Problem 

If you push a box, then you push also all its content. This is commonsense reason-
ing and some philosophers see the frame problem as a part of commonsense  
reasoning and logic. The logical aspect of the frame  problem is about the axioma-
tization of an application domain in which some causal laws for an event (or ac-
tion) should be predetermined. This predetermination includes stating some set of 
rules. Each set of rules carries potential information about certain statements. But 
it is important for an agent to find a proper way to create a new set of rules in an 
unknown (novel) situation. Reasoning is the most crucial issue for the analysis of 
the logical aspect of the frame problem. For instance, Freeman (1992) describes 
the frame problem as a question of finding a reasoning procedure in a dynamic 
process. According to Peppas et al (2001: 403), the frame problem is about devel-
oping an action theory which gives an effective reasoning to AI in a dynamic sys-
tem. Fetzer (1991) sees the frame problem as a part of the problem of induction.  
According to Shanahan (1997), the frame problem is the problem of building an 
information system in which a robot can develop an adaptive capability in the 
changing context. He (1997: xix) states: “we still have little idea how to endow a 
machine with enough common sense to cope with an environment as unfamiliar 
and idiosyncratic as the average kitchen.” Shoham (1988: 16-17) considers the 
frame problem to be a qualification problem: “it is the problem of trading off the 
amount of knowledge that is required in order to make inference on the one hand, 
and the accuracy of those inferences on the other hand.” Crockett (1994) sees a 
close relation between the frame problem and the Turing Test. He states: “the 
frame problem bears on the Turing test in such a way that it serves to augment 
significantly more conventional defenses of the test…, and it enhances the case for 
why the Turing test is resistant to the criticism of long-time Turing test critics” 
(1994: 189). Hayes (1988) and Lifschitz (1987) consider the frame problem to be 
a technical problem that can be solved by developing some new techniques (me-
thods) in philosophical logic.        
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2.3   The Epistemological Aspect of the Frame Problem 

In AI, there is a tendency to define the frame problem as an epistemological di-
lemma. For instance, Korb (1998: 318) claims that the frame problem is the major 
epistemological problem in AI. According to McCarthy and Hayes (1969), intelli-
gence has two aspects namely, epistemological and heuristic. The epistemological 
aspect of intelligence concerns the representation of the world; and the heuristic 
aspect of intelligence deals with practical issues such as problem solving. They 
conceive the frame problem as a part of the epistemological aspect of intelligence 
because the frame problem is the result of the use of representations in the world. 
According to Pollock (1997), the frame problem is a question for human episte-
mology. Pollock offers a solution to the frame problem that involves the analysis 
of how humans perform inductive and probabilistic reasoning: “the best way to 
solve the frame problem for artificial rational agents is to figure out how it is 
solved in human reasoning and then implement that solution in artificial agents” 
(1997: 145). Dennett considers the frame problem to be an abstract epistemologi-
cal challenge. Dennett (1978: 125) states: “The frame problem is an abstract epis-
temological problem that was in effect discovered by AI thought-experimentation. 
When a cognitive creature, an entity with many beliefs about the world, performs 
an act, the world changes and many of the creature’s beliefs must be revised or 
updated.” Haugeland (1988) mentions the epistemological aspect of the frame 
problem from another point of view. In his view, the problem of accessing know-
ledge is parallel to the frame problem because “the challenge is not how to decide 
for each fact whether it matters, but rather how to avoid that decision for almost 
every bit of knowledge” (1988: 82-83). 

3   Avoiding the Designer Approach to the Frame Problem 

Three aspects of the frame problem consider the issue from a designer (program-
mer) point of view. The frame problem is not the problem of a machine intelli-
gence designer but the problem of the machine itself.1 We propose three steps in 
order to build an autonomous approach to the frame problem. These steps are (1) 
the agentification of the frame problem, (2) a control system approach, and (3) a 
trans-logical model peculiar to AI. Each step towards building an autonomous ap-
proach to the frame problem depends on each other. 

                                                           
1 There are some ideas that give priority to the designer for the solution of the frame prob-

lem. For instance, Hayes (1988: 128) states: “The frame problem is not a problem for the 
robot, but for us, its designers.” Hayes situates designers as problem solvers by using cer-
tain techniques in the computational theory. In addition, Dennett (1990: 153) mentions the 
significant role of a programmer for the solution of the frame problem: “The reason AI 
forces the banal information to the surface is that the tasks set by AI at zero: the computer 
to be programmed to simulate the agent, initially knows nothing at all ‘about the world’. 
The computer is the fabled tabula rasa on which every required item must somehow  
be impressed, either by the programmer at the outset or via sequent ‘learning’ by the  
system.”   
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3.1   The Agentification of the Frame Problem    

Agency is a system of actions that has the capability to determine whether a cer-
tain collection of information is relevant not just for one environmental situation, 
but for a great extent of environmental situations. Here, processing patterns are 
one of the important components of developing decision making abilities in a 
complex environment. An agent should be able to alter its goals in terms of rele-
vant data.            

Agency must be the central notion in artificial intelligence since the cognition 
of reality originates from agentive actions. Agency is the ontological and episte-
mological constituent of reality and cognition. Reality is characterized by agentive 
activity. In the metaphysics of AI, reality must not be seen as a mere psychic giv-
en or a datum of a mental state. On the contrary, it is an embodiment in which the 
subject and his surrounding environment should be situated in an agentive rela-
tion. Therefore, agency is primary, even in defining objectivity. Reasoning and in-
telligence are not located in the organism; they are not an inner and private activi-
ty of the organism. Intelligence is not a primitive capacity, but is rather something 
achieved by agentive actions. To become conscious is to be able to act in an agen-
tive manner. Thought culminates in a form of agentive cognition and in AI, agen-
tive cognition is the only genuine form of knowledge. Agentive cognition is a 
process of mediation between an agent and its surrounding environment in an ac-
tive exploration. Embodiment is an essential element for this mediation in the case 
of machine intelligence. An embodiment model gives action a primary role. What 
makes an embodiment model special for AI is that human cognition has to relate 
to interactions within the surrounding environment, and that means that the body 
has a significant role in certain aspects of human cognition. An embodiment mod-
el differs from cognitive models. This difference can be seen as an alternative 
source for modeling certain cognitive skills of a human being. A cognitive model 
“constructs” the cognitive skill; but an embodiment model “embodies” the intrin-
sic dynamics of the system. An embodiment model is distinguished from a cogni-
tive model by specifying the interaction of cognition and the physical system. In 
an embodiment model, cognition is considered a highly active and intelligent 
process. It is not the passive construction of an inner-representational model, but 
rather the active retrieval of agentive information from the environment. The typi-
cal decomposition of perceptual and cognitive systems into a variety of inner-
representational subsystems prevents us from seeing the interactional character of 
cognition characterized by bodily agentive actions. Therefore, we argue that situat-
ing machine cognition within an interactive agentive context improves cognitive 
information involved in various cognitive tasks such as reasoning. 

Agency must be the essential criterion for the success of machine intelligence 
instead of linguistic-behavioral-based criteria (for instance, the Turing Test). Since 
agency is the system of actions in which mind is rooted, it –in AI– is the basic 
constituent of rationality, intelligence, mental acts, reasoning and other cognitive 
skills. In other words, agentive action is the primary source for the rationalization, 
reasoning, and cognitive processes in machine intelligence. However, in order to 
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prevent misunderstanding, we must mention that every action is not essentially or 
originally agentive. In AI, action cannot be seen only as a response to external 
stimuli. Action must be an interactional process that machine intelligence does for 
a reason. The essence of agentive action is rationalization in which machine intel-
ligence acts in order to achieve its goals. George (1977: 49) describes the general 
features of rational-agent behavior in machine intelligence: “the computer must 
have the capacity to draw inferences of both an inductive and a deductive kind, 
and take whatever steps are necessary to seek information which may be needed 
by some other source of information.”  

AI must consider reasoning as a form of action of a dynamic-representational 
system, developed during interaction within the environment. The occurrence of 
reasoning in machine intelligence does mean a new kind of action of the highly 
dynamic-representational system capable of making inferences from its expe-
riences in order to achieve new results of action and form novel systems directed 
towards the future. Therefore, in AI, reasoning is not a mystical emergent property 
of neural elements, but a form of agentive action necessarily following from the 
development of a dynamic-representational system.   

Agency is inherently relational activities, aimed at exerting a certain influence 
on the environment. Therefore, in AI, we propose descriptions of “representation” 
and “reasoning” in environment-referential instead of neuron-identified terms. We 
claim that theoretical studies on cognitive science have consistently been based on 
the idea that the mind and surroundings form two distinct systems and that mental 
activity is situated in the mind, that it is an inner and subjective activity of the 
mind. It is this main presupposition that seems to lead up a blind alley in cognitive 
science and artificial intelligence. This presupposition leads cognitive science and 
AI researchers to the idea that the formation of cognition depends on transmission 
of information from the surroundings to the mind. However, we defend a different 
position in which we consider the mind and the surroundings as one system; all 
formation and increase of cognition means only dynamic re-organization or ex-
pansion of this system. In AI, cognition must be created in an agentive manner; it 
cannot be transmitted or moved from one head to another. Instead of focusing on 
the linear sequence of information AI research should be directed toward the con-
ditions necessary for generating information. Agentive cognition is an ongoing in-
formational process based on a mutual constitutive relationship between the mind 
and its surroundings. Agentive cognition is not just a formal representation corre-
lated with a sequence of information, but instead refers to certain aspects of a 
mind-surroundings system as a whole. 

In AI, it is possible to characterize human cognitive activities in an agent-based 
model. Therefore, we subsume the conception of “human mind” under a more 
general conception of “agency”. The agentive characterization of human cogni-
tive activities is the basic criteria of reasoning for the solution of the frame prob-
lem. We conceive machine intelligence as an agent which is in the world as an 
embodied-perceiver. An agent is not the representation of a pre-determined (or 
pre-programmed) authoritativeness, but the act of bringing authoritativeness into 
the machine intelligence.  

In AI, agents are considered as active formers of their surroundings rather than 
simply passive responders to their environment. Therefore, agency is the system 
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of actions in which mind is rooted. The system of actions (agency) would be im-
practicable without cognition, and cognition would be irrelevant without the  
system of actions. McGinn (1982: 82) mentions the role of action in cognition as 
follows: “cognitive phenomena can be properly understood only in the light of 
their role in informing action – creatures can think only because they must act.” 
We take this idea one step further and claim that it is the agentive characterization 
that makes the human cognition meaningful and relevant; and it is the agentive 
characterization that brings the conceptual (semantic) network within the cogni-
tive capability of human mind. In that sense, agency has an active role in the  
formation of a cognitive relation and reasoning. In AI, this active role can be em-
bodied in machine intelligence. The emergence of machine intelligence does not 
presuppose that the agent evolves out of the complex environment, but rather 
more fully into it. Human cognition is an agent-based formation (construction) and 
models of mind must analyze the processes of this formation. Therefore, a solution 
to the frame problem should be concerned with the analysis of agentive construc-
tion of the human cognition. In AI, the only way to develop an agentive approach 
to the frame problem is to build a proper control system theory.  

3.3   A Control System Approach 

AI considers the hierarchy of the human mind as a “computer-based hierarchy” in 
which each level and unit has a mechanistic role or function. Nevertheless, we 
conceive machine intelligence as a “living-system-based hierarchy” in which each 
level and unit is an ordered arrangement of parts and interacting processes that 
characterizes the whole intelligent system. The basic difference between living 
systems and AI depends on their control mechanisms. In living systems, the hie-
rarchical organization of the whole coordinates (controls) the role of each level 
and unit, but in AI, the proceeding of each level and unit determines (controls) the 
outcome.  

Control mechanisms need certain revisions in AI. The behavior of a living 
agentive system can be based on several control strategies which have very differ-
ent characteristics with respect to the data which they process. There are several 
conditions for choosing the appropriate strategy for the control mechanism of an 
agent such as the availability of data for the performance of an agent, comparing 
stable and dynamic parameters of the environment, and the access to explicit data 
about plans, goals, and the current state of affairs. Agentive cognition and reason-
ing procedures can be understood dynamically. There are no fixed states for high-
er-order cognitive systems. If pre-determined programming rules have sets of 
symbol-processing units that dictate the machine’s behavior for every possible sit-
uation, then machine cognition is going to be static. Yet, if machine intelligence 
has a static character for the regulation of internal and external inputs, how can it 
possibly be in an agentive position? The dynamical approach is necessary to con-
struct autonomous agency. Machine intelligence has an agentive position in its 
dynamic disposition rather than in the internal-representational makeup. There-
fore, we should pay more attention to the changes of states than to the states them-
selves. In other words, the geometry of states will be more important than the 
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structure of states, that is, their position will be important. Geometry is a common 
metaphor used in dynamical approach to cognitive systems. It refers to the fact 
that human cognition is a matter of position and change of position rather than lo-
cal and stable representational structures. There are various definitions of dynami-
cal systems. The common point in these definitions is that in order to understand 
human cognition, it is to be noted that sets of quantitative variables changing in-
terdependently and continually are more important than the law of qualitative 
structure. That is to say, in a dynamical system, human cognition is considered to 
be a structure that has indefinite limits and is transmitted as a continuous variation. 
For building an agentive system, it is very important not to restrict an agent (ma-
chine intelligence) to follow only one predetermined set of rules but to give it the 
opportunity to choose and shift different sets of rules according to its situation. 
This can be done by a proper control mechanism which can find a balance be-
tween stability and flexibility of information in a complex environment.  

In AI, a control mechanism is an operational function for machine intelligence 
via its logic programming. A control mechanism, formed by logic programming, 
specifies how data are governed according to the interior code. Logic is the source 
of data structures and procedures; and a control mechanism is the operational unit 
of a machine that uses the data structures and procedures. Therefore, the behavior 
of machine intelligence can be formed in terms of both its logic and control me-
chanisms. Logic and a control mechanism are not independent components of  
machine intelligence. In AI, developing a flexible control system allows optional 
operational procedures to be tested and evaluated. For developing such a flexible 
system, control over the coding protocol should be based on a logical model that 
has a transformational-dynamic character. We propose two types of control me-
chanisms namely, mode-level and status-level. A control mechanism at the status-
level has three types of processes: ordering, option, and looping. First, ordering is 
a process uniting data and codes in terms of time and space. Therefore, the flow of 
various data may be controlled by an ordering protocol that situates the environ-
mental data in terms of temporal and spatial conditions. Second, the option 
process regulates and manages alternative data sources in terms of their potentiali-
ties and conditions. The potentiality and condition of each piece of data can be de-
termined by using certain conditional elements such as if/then/else. Third, the 
looping process controls the repetition of data in order to make machine intelli-
gence more effective in its operations and prevent doubling data. A control  
mechanism at the mode-level has two types: prescription and relevance. First, pre-
scription is a detailed procedure in which certain types of environmental data, 
which are very complex and hard to represent in a unified manner, are particula-
rized into manageable units so that they can be controlled. This is a method that 
operates on complex data in a specialized way to achieve particular ends. In other 
words, prescription is a type of control mechanism in which complex data are de-
fined by formal parameters and machine intelligence uses these formal parameters 
in its processing and operating of the data. Second, relevance is a higher-level 
procedure that determines the relational and relevance value data. The control me-
chanism in AI is important for the formation of machine cognition because the 
coding patterns and their regulation control the method of processing-data and 
construct a habitual form for machine behavior.  
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3.4   A Logical Model Peculiar to Artificial Intelligence  

The solution to the frame problem depends on a logical model peculiar to AI.  
Only a proper logical model can provide machine intelligence with relevant know-
ledge, action, and planning in a complex environment. In AI, complexity is a logi-
cal issue defined in terms of formal and computational items. The solution of the 
frame problem depends on the manner of reorganizing data-processing in terms of 
changes in the world. This kind of reorganization is possible only by using a prop-
er logical model. That is to say, the logical model embodied in machine intelli-
gence is sufficient for describing the elements of a complex situation and finding 
the relevant action and plan. If the frame problem remains a problem of designers, 
it will never be solved. The way humans perform reasoning about changes and 
complexities in the environment cannot be modeled by AI. Machine intelligence 
requires a transformational logical model peculiar to its hierarchical organization. 
In other words, we see the trans-logical model as a proper methodological ground 
for developing a reasoning model in an agentive system.    

3.4.1   The Transformation of Data within Various Logical Systems 

We have attributed a constructive and regulative role to logic in AI to find a prop-
er (ideal) way of reasoning for machine agency. For the realization of such roles, a 
logical model that can operate in complex situations and overcome the frame 
problem should be developed. The main idea behind the trans-logic system is that 
in AI, reasoning is based on the idea of using data and operating successive 
processes until the final information is achieved (realized). These processes are of 
two kinds. The first kind is replacement, where any data unit and/or sets in the 
processing are interchanged within one or more data unit and/or sets. The second 
kind is context-dependency, in which context-free and context-dependent rules are 
described. A context-free role indicates that data-units can always be interchanged 
with another one. A context-dependent rule implies that the replacement of data-
sets is possible only in a pre-ordained context. In our trans-logic system, data-units 
are microstructures that are autonomous and transitional, able to pass from one 
condition to another, to be integrated into larger data-sets, with the partial or total 
loss of their former structuring in favor of a new reasoning function. Data-units 
are micro-models with a transformational structure that can be integrated in larger 
programming units and thereby acquire functional significations corresponding to 
their positions in these larger programming units such as data-sets. The configura-
tion between data-units and data-sets is done by various logical models. Therefore, 
a trans-logic system includes concomitant logics which have various functions for 
reasoning processes in machine intelligence.  

What do we mean by concomitant logics, and what kind of a role do they have 
in a logical model? The concomitant logic is the interactional existence of various 
logical systems (or models) together in machine intelligence. In AI, we propose to 
use groups of programs, each of which are based on different logical systems such 
as heuristic principles, deductive reasoning, defeasable reasoning, temporal logic, 
analogical reasoning, nonmonotonic reasoning, modal logic (possible-world 
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model), probabilistic reasoning that allow a machine intelligence process to han-
dle particular data in a large set of functional analysis. For instance, for the 
processing of particular data X, an A-type of program based on the temporal logic 
can be more effective than a B-type of program based on deductive reasoning (or 
the first-order logic). Using different programming and logical structures in a uni-
fied hierarchical model requires a regulative system that provides the interaction 
and transformation between different programming and logical structures. At that 
point, in the trans-logic model, we give fuzzy logic a regulative and transforma-
tional role in logic programming because fuzzy logic can regulate sequences of in-
formation processing, permitting passage from one stage (for example, deductive 
reasoning system) to another stage (for example, paraconsistent systems). There-
fore, fuzzy logic can be the only transformational algorithm for logic program-
ming. Fuzzy logic is also important for idealization and appropriation because  
appropriation is a significant criterion for understanding whether a piece of data is 
suitable, proper, and relevant to the agent or not. 

For the solution of the frame problem, the crucial question is how can machine 
intelligence decide which information is proper for the current situation? In other 
words, how can we build a regulative system that governs various reasoning 
processes depending on different logical models? Fuzzy logic is the proper regula-
tive system for managing different logical models (reasoning systems). Fuzzy log-
ic is not an effective reasoning model2; but rather an effective regulative model for 
constructing an interactional and transformational system between different rea-
soning models. The defenders of fuzzy logic claim that classical logical models 
are inadequate for modeling informal arguments. They propose fuzzy logic as a 
modification (fuzzification) for a logical model that can be applied to informal ar-
guments. This modification (fuzzyfication) has two main stages. Turner (1985: 
101) describes them as follows. “(i) The introduction of vague predicates into the 
object language. This results in some form of multivalued logic. (ii) Treating the 
metalinguistic predicates ‘true’ and ‘false’ as themselves vague or fuzzy.” In 

                                                           
2 Although we do not consider fuzzy logic as a direct reasoning system for the environmen-

tal data, the advocates of the idea of fuzzy logic claim that fuzzy logic has a great signific-
ance in AI because human reasoning is approximate and fuzzy logic can serve as the logic 
of human cognition and reasoning. For instance, Zadeh (1996: 89) explains the impor-
tance and general features of fuzzy logic as follows: “Fuzzy logic, as its name suggests, is 
the logic of underlying modes of reasoning which are approximate rather than exact. The 
importance of fuzzy logic derives from the fact that most modes of human reasoning –and 
especially common sense reasoning– are approximate in nature. It is of interest to note 
that, despite its pervasiveness, approximate reasoning falls outside the purview of classical 
logic largely because it is a deeply entrenched tradition in logic to be concerned with those 
and only those of modes of reasoning which lend themselves to precise formulation  
and analysis. Some of the essential characteristics of fuzzy logic relate to the following: --
In fuzzy logic, exact reasoning is viewed as a limiting case of approximate reasoning./ --In 
fuzzy logic, everything is matter of degree./ --Any logical system can be fuzzified./ --In 
fuzzy logic, knowledge is interpreted as a collection of elastic or, equivalently, fuzzy con-
straint on a collection of variables./ --Inference is viewed as a process of propagation of 
elastic constraints.”          
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trans-logic system, the data processed by various logical models will be the mem-
ber in a fuzzy data set –the setoff information to which fuzzy data apply. In the 
fuzzy data set, each data is to be thought of as being a matter of degree. A degreed 
form of data gives machine intelligence flexibility in order to adapt itself to the 
environment. In certain situations, degreed data are extremely useful for coping 
with daily practices and for communication. Since fuzzy logic provides an ade-
quate pseudoverbal representation of information (knowledge), it serves as an in-
terface. In AI, the fuzzification of processed data provides a way of forming  
degreed data sets that are more general and more reflective (and representative) of 
the imprecision of the surrounding environment.     

There are many fuzzy logic applications, such as a cement kiln control system 
and an automobile control engine, in industries that use AI techniques. However, 
instead of classical application of fuzzy logic, we attribute an extra role to fuzzy 
logic. Cognition is the arrangement of data in terms of an agentive situation. Var-
ious logical models (reasoning systems) can be active in this arrangement but 
fuzzy logic is the system that provides harmony between various logical models 
performing in the same context. In addition, fuzzy logic is the best way to describe 
environmental data as a linguistic value. Lotfi Zadeh is the first and the most im-
portant person who proposed fuzzy logic as a new approach to reasoning and lin-
guistics. In our opinion, his studies on fuzzy logic and its implications related to 
AI are very valuable for our trans-logic system. Fuzzy sets are essential compo-
nents for machine thinking because the transformation from data into cognition is 
a gradual process rather than an abrupt transition. Two-valued or multi-valued log-
ic does not present a sufficient reasoning system in AI. Machine intelligence re-
quires fuzzy logic in order to manage various reasoning systems in the light of the 
performance of the agentive task at hand. Fuzzy algorithms and fuzzy conditional 
statements3 can characterize the relationship between various reasoning systems. 
In the arrangement of data, machine intelligence does not have to use high degree 
precision values for data-processing. Fuzzy sets can be used in order to operate on 
a data with a minimal degree of precision. Therefore, “fuzzy algorithms can pro-
vide an effective means of approximate descriptions of objective functions, con-
straints, system performance, strategies, etc. (Zadeh 1974: 59). Approximation is a 
tool for fuzzy reasoning that can also be used for understanding natural language.4 

In AI, a theoretical model based on fuzzy logic uses linguistic variables in order 
to describe behavioral systems. In other words, linguistic variables allow machine 
                                                           
3 Zadeh (1974: 57) describes fuzzy algorithms and fuzzy conditional statements as follows: 

“Fuzzy conditional statements are expressions of the form IF A THEN B, where A and B 
have fuzzy meaning, e.g., IF x is small THEN y is large, where small and large are 
viewed as labels of fuzzy sets. A fuzzy algorithm is an ordered sequence of instructions 
which may contain fuzzy assignments and conditional statements, e.g., x=very small, IF x 
is small THEN y is large. The execution of such instructions is governed by the composi-
tional rule of inference and the rule of the preponderant alternative.”      

4 Zadeh (1979: 149) sees approximation as an essential part of fuzzy reasoning. By approx-
imation, Zadeh means: “the process or processes by which a possibly imprecise conclu-
sion is deduced from a collection of imprecise premises. Such reasoning is, for the most 
part, qualitative rather than quantitative in nature, and almost all of it falls outside of the 
domain of applicability of classical logic.”       
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intelligence to perform approximate reasoning. Zadeh (1983:254) also claims that 
fuzzy relations are an explanatory database for understanding the meaning of a 
proposition. This explanatory database base can be important for the background 
knowledge in commonsense reasoning.    

4   Conclusion 

In the frame problem, we are studying how semantic data can be used to make 
statements in machine intelligence. To make a statement about environmental data 
demands that certain conditions be more or less satisfied. These conditions are 
very diverse. There are physical conditions such as encoding the data. There are 
conditions involving background information. There are logical conditions such as 
assigning proper names to a unique referent. When an agent makes a statement on 
environmental data, the information about the data should provide that most of 
these conditions are satisfied. 

In AI, reasoning is the final stage in which all the information gained from  
data-processing is used in an appropriate way. Therefore, reasoning is the assem-
blage of cognitive systems active in machine cognition. We have argued that clas-
sical AI reasoning models depending on deductive reasoning systems and the  
designer approach are not adequate. We need a logical model that can perform 
various logical models on the same data and can manage the information gained 
from these models. This management allows machine intelligence to have a sense 
of relevance.             
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Machine Intentionality, the Moral Status  
of Machines, and the Composition Problem  

David Leech Anderson* 

Abstract. According to the most popular theories of intentionality, a family of 
theories we will refer to as “functional intentionality,” a machine can have ge-
nuine intentional states so long as it has functionally characterizable mental states 
that are causally hooked up to the world in the right way. This paper considers a 
detailed description of a robot that seems to meet the conditions of functional in-
tentionality, but which falls victim to what I call “the composition problem.” One 
obvious way to escape the problem (arguably, the only way) is if the robot can be 
shown to be a moral patient – to deserve a particular moral status. If so, it isn’t 
clear how functional intentionality could remain plausible (something like “phe-
nomenal intentionality” would be required). Finally, while it would have seemed 
that a reasonable strategy for establishing the moral status of intelligent machines 
would be to demonstrate that the machine possessed genuine intentionality, the 
composition argument suggests that the order of precedence is reversed: The ma-
chine must first be shown to possess a particular moral status before it is a candi-
date for having genuine intentionality. 

In this paper, an answer will be sought to the question:  

 “What properties must a machine have if it is to have genuine beliefs about ob-
jects in the world?”  

It would seem to be an altogether different question – about the foundations of 
moral personhood rather than about intentionality – to ask:  
 

“What properties must a machine have if it is to be an object of moral concern 
(if I am to have any obligations with respect to it)?” 
 

Most believe that an answer to the first question does not engage issues of morali-
ty or moral agency.  The common assumption is that we must first determine what 
intentionality is, and whether non-biological machines are capable of possessing 
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it, before we ask what, if any, our moral obligations might be with respect to such 
systems.  I will argue that the order of conceptual priority is reversed.  The second 
question must be answered before the first.  An argument in defense of this claim 
will support the theory that the very nature of intentionality must be grounded in 
the moral status of the cognitive agent. 

1. Very few philosophers are in the market for a fundamentally new theory of in-
tentionality.  There are some areas within the philosophy of mind where there is no 
overwhelming consensus and it seems that every week there is a new theory gain-
ing a hearing.  Phenomenal consciousness is one such area.  It is a difficult nut to 
crack and many philosophers and scientists not only doubt that any current theory 
has solved the “hard problem” of consciousness, many are less than sanguine about 
the prospects of ever resolving it satisfactorily.  The same cannot be said for inten-
tionality.  Intentionality is one of the cognitive domains where there is a dominant 
theory which many consider unassailable.  I will refer to the dominant theory as 
“functional intentionality” (borrowing from Jaegwon Kim).  This is a broad view 
that has room for a variety of different versions.  There continues to be a vigorous 
debate about precisely what form the final, ideal version of this theory should take, 
but a majority of philosophers and an overwhelming majority of cognitive scientists 
are confident that intentionality can ultimately be functionalized.   

Kim expresses this confidence about the functionalizing of intentionality in an 
article where he also admits his skepticism about functionalizing phenomenal con-
sciousness.  Although willing to flirt with epiphenomenalism – which would re-
quire abandoning a physicalist reduction of phenomenal consciousness – he has in 
no way lost confidence in a physicalist reduction of intentionality.  He says: 

 

In short, if a group of creatures are behaviorally indistinguishable from us, 
we cannot withhold from them the capacity for intentional states . . Intentional 
states, therefore, supervene on behavior. . . 

    . . intentional states are functional states specified by their job descrip-
tions. (Kim, J. 2007, p. 415). 

 
I offer the following not as a definition, but as one popular example of how the 
theory might be characterized. 

 

Functional Intentionality: A complex system will be in the intentional state of 
“believing that p” so long as some state of the system serves as a representation 
“that p” and is playing the belief-role in the overall economy of the system.  
The content will be fixed in information-theoretic terms by the fact that the 
state “carries the information that p.” 

 
There is no question that functional intentionality dominates the field.  Yet there is 
a minority voice within the intentionality debate that has only gained traction 
within the past decade.  This is the view I will call phenomenal intentionality.1  
Very simply, a theory will qualify as a version of phenomenal intentionality if it 
                                                           
1 Two excellent surveys of arguments advanced in defense of phenomenal intentionality are 

Horgan and Kriegel (forthcoming) and Siewert  (2009). 
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makes phenomenal consciousness, either actual or potential, a necessary condition 
for genuine, underived intentionality. 

 

Phenomenal Intentionality: A complex system will be in the intentional state of 
“believing that p” if and only if that system is (actually or possibly) phenome-
nally conscious “that p.”  

 

I find the disagreement between the functional intentionality camp and the phe-
nomenal intentionality camp to be one of the most engaging within the study of 
cognition because it is a watershed issue where it may finally be decided whether 
phenomenal consciousness is merely an inconsequential byproduct of contingent 
forces on this planet and ultimately inessential to the appearance of genuine cogni-
tion or whether it is instead an essential characteristic of intentionality, a prerequi-
site for mental states bearing genuine cognitive content.  The arguments of this 
paper do not directly confront this question.  However, if successful, these argu-
ments will introduce a new dimension to this dispute which could determine 
which side ultimately prevails.  

 
2. If the promise of functional intentionality is to be fulfilled in a non-revisionist 
way (which rules out eliminativism), it must, at the very least, be able to specify, 
solely in physical terms (including structural and functional terms) what we know 
to be the proper content of the complete range of contentful mental states.  On the 
one hand, popular versions of this theory make the strongest case in their favor by 
offering physically-kosher content-fixing properties that seem to include within 
their extension, those objects which we in fact judge to be within the wide content 
of the relevant mental states.  On the other hand, most defenders and detractors 
alike would admit that the real challenge for these theories is not inclusion of the 
right objects or properties, but exclusion of the wrong ones.  The vulnerability of 
these theories is that there are simply too many physical objects (or properties) 
that are candidates for doing the reductive work.  This is usually characterized as 
an “indeterminism” problem of one kind or another.  The worry is that the reduc-
tive properties lack the resources to draw a (non-arbitrary) line between the  
semantically irrelevant objects or properties and the ones we know (pre-
theoretically) to be the correct ones.  The two most important domains where the 
threat of indeterminism arises are the fixing of cognitive content & identification 
of cognitive agents.   

The most discussed type of indeterminism is content indeterminism.  This was 
originally raised not by detractors but supporters of the behaviorist branch of the 
functional intentionality family – the first branch to really flourish.  The charge 
was raised in 1960 by W.V.O. Quine (1960) one of the most famous and earliest 
defenders of functional intentionality.  Quine argued that linguistic behavior alone 
left it ambiguous whether the meaning of a particular natural language term  
(gavagai) was justifiably translated by the concept “rabbit” as opposed to the ex-
tensionally equivalent concepts of “undetached rabbit part” or “manifestation  
of rabbithood” (Quine 1960, 152-154). This poses the threat of content  
indeterminism. 
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Content Indeterminism: When a theory of intentionality specifies multiple and 
incompatible assignments of content to one and the same state of a complex 
system.  
 

Quine did not flinch in the face of what many consider an intolerable kind of inde-
terminism.  He used it as grounds for eliminating “meaning,” traditionally con-
ceived, from his ontology, replacing it with the more ontologically parsimonious 
“disposition to verbal behavior.”  He often reveled in the fact that his was an elimi-
nativist position more than a reductionist one. Conclusions he drew from this view 
include the “indeterminacy of translation” and the “inscrutability of reference” and, 
it even played a contributing role in his defense of “ontological relativity.”   

A second, closely related, kind of indeterminism I will call agent indeterminism 
and is defined at the level of cognitive agents rather than token mental states.  
Again, this issue is most powerfully raised not by an opponent of the view but by 
one of its most famous contemporary defenders: Daniel Dennett.  Exhibiting his 
dry humor, Dennett asks us how we can tell the “true believers” from those that 
lack genuine intentionality.  Dennett says you can’t – not at a metaphysical level.  
Of course, he acknowledges that there are pragmatic grounds – relative to particu-
lar interests – to justify our taking the “intentional stance” with respect to some 
system; he simply denies that there are any non-relative metaphysical grounds for 
such a distinction. Or, what comes to the same thing, he is an instrumentalist when 
it comes to the interpretation of sentences that seem to express an ontological 
commitment to genuine intentional agents.  He made the eliminativist implications 
of this theory explicit when he denied that there exists such a thing as intrinsic 
(non-derivied) intentionality.  It isn’t merely the thermostat’s contentful states that 
are derivative, ours are equally so (Dennett 1987, Chapter 8).   

We might call the Dennett version, global agent indeterminism, since the inde-
terminacy afflicts the entire range of potential candidates that might qualify for the 
label, “intentional agent.”  There is a related form of the same phenomenon, less 
familiar, that afflicts a single complex system.  Consider any complex system, C, 
that is a potential cognitive agent and that consists of multiple subsystems, S1 – 
SN.  Then, consider another mechanism, M, that bears causal connections to C.  A 
theory of intentionality must have the resources to determine whether M is indeed 
an object external to C, or is instead another constitutive element of C, properly 
classified as, SN+1.  Agent indeterminism arises when a theory of intentionality 
lacks the resources to specify whether M is distinct from C, or is partly constitu-
tive of C. 

  
Agent Identity Indeterminism: When a theory of intentionality lacks the re-
sources to specify which causally connected elements are constitutive of the 
agent and which are external to it. 
  

Most adherents of functional intentionality have considerably less tolerance than 
do Quine and Dennett for a level of indeterminacy that undermines the very ideas 
of intentional content and intentional agency.  Defenders of functional intentional-
ity, then, dedicate considerable energy to an explanation of how the resources of 
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functional intentionality can, indeed, deliver determinate cognitive content and 
identify determinate conditions for cognitive agency. 

This paper will raise a pair of test-cases that: (1) put functional intentionality’s 
indeterminism problems in the severest light (with a single case that manifests 
both content indeterminism and agent identity indeterminism); and, (2) justify the 
claim that judgments about intentionality, if they are to escape debilitating inde-
terminism, must appeal to the moral status of the cognitive agent. 

 
3. As an alternative to functional intentionality, I offer the following theory: 
 

Moral Status Intentionality: The content of token mental states and the identity 
conditions of intentional agents are grounded in those properties by virtue of 
which a complex system is an object of moral concern (i.e., at least has the sta-
tus of a moral patient). 
 

By “moral status” I mean to invoke a concept familiar in moral philosophy.  While 
there are undoubtedly many subtle gradations of moral status that carry ethical 
import, only the two most commonly used classifications are necessary to under-
stand the theory.  

 

Moral Patient: An entity that deserves to be an object of moral concern. 
 

Moral Agent: An entity that (1) deserves to be an object of moral concern, (2) 
has the capacity to make moral judgments, and therefore (3) has the right of 
self-determination. 
 

A dog is a moral patient.  It has a privileged status which requires me to take its 
interests into account as well as my own before I act.  I have even more obliga-
tions with respect to human beings who qualify as moral agents.  I am morally 
permitted to lock my dog in the house, but I am not permitted to lock you in my 
house.  Dogs lack the cognitive abilities that would otherwise earn them the right 
of self-determination. 

According to moral status intentionality, if a complex system is to have  
genuine, intrinsic intentionality (unlike a thermostat that has only derived inten-
tionality) it needs to achieve the status of being a moral patient.  A thermostat 
“carries the information that p” (for p: “The room temperature is 70 degrees Fa-
hrenheit.”) but it does not “believe that p.”  I will argue that only a moral patient 
can have beliefs.  When a dog walks to its supper dish to eat, it is possible that it 
genuinely believes that p, for some p roughly like, “Bowl has food” (but substitut-
ing more primitive, doggy-concepts for our concepts of ‘bowl’ and ‘food’).  On 
this theory, dogs are perfectly reasonable candidates for genuine intentionality. 

Obviously enough, the appeal to moral status needs to be grounded in a moral 
theory.  Any theory will do, but I will begin by assuming utilitarianism both be-
cause it is the theory most widely held by defenders of functional intentionality 
and because it is the most straightforward.  According to utilitarianism, acts are 
morally evaluated according to the overall balance of happiness and suffering they 
cause in objects of moral concern.  Assuming utilitarianism, moral status will be 
grounded in the morally evaluable conscious states of pain, pleasure, happiness, 
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sadness, etc. (Moral status can also be grounded in a Kantian, deontological theory 
which takes respect for rational agents as a fundamental principle.  Space does not 
permit a detailed examination of how moral status intentionality would be con-
ceived on a deontological model.)  

 
4. With the important background concepts now in place, it is time to introduce a 
story about a robot in the year 2050.  The only assumptions that I will make are 
that the robot described (below) meets the conditions required by functional inten-
tionality and that the robot lacks phenomenal consciousness.  If you believe the 
robot’s behavior (as described below) is insufficiently complex to meet the first 
condition, then simply re-imagine the robot with additional capacities.  Nothing in 
the argument hinges on details of that sort.  If you believe there is no possible 
world in which a robot has behavior sufficiently complex to meet the conditions of 
functional intentionality and yet lacks phenomenal consciousness, then you are in 
that minority group for whom the following argument will be a non-starter.  But 
you are in the minority.  Many defenders of functional intentionality think it is a 
strength of the theory that it has room for intentional systems without phenomenal 
consciousness.  It is this view against which the argument is directed. 

CASE #1: Robby the Robot: It is the year 2050.  John is the sole support of an ex-
tended family of 25 people.  He has worked his entire adult life and has exhausted 
his family fortune to build a complex robot (“Robby”) that will travel in space to 
visit a planet, Px, in a distant galaxy.  The robot is remarkably autonomous and 
has a built-in operational parameter (a “desire”) to find and gather a scarce chemi-
cal compound, C1, that has remarkable medicinal properties and that is known to 
exist nowhere else in the universe.  When Robby locates a cache of C1 Robby says 
things like: 

 
“There (pointing to the ground) are approximately 4 kilograms of C1 between .5 
and .75 meters below the surface of the ground.  Should I extract it?” 

 

Building Robby to successfully perform this task is complicated by the conditions 
on the planet’s surface.  The environment on Px is wildly different than on earth 
because it has a dense, inhospitable atmosphere filled with all manner of gases, 
unrelenting electrical storms, and rhythmic gravitational fluctuations.  These con-
ditions are so extreme that they materially affect the operations of standard sen-
sory devices.  Devices that would be effective for locating and extracting C1 on 
earth, would be wholly ineffective on Px.  Robby has been equipped with special 
sensory systems that compensate for the distorting effects of the wild forces at 
work on the surface of Px and that give Robby the capacity to reliably identify and 
extract C1 in Px’s strange environment – which he did for several years. 

In time, though, the bottom dropped out of the C1 market and Robby’s work on 
Px was no longer profitable.  John’s financial situation was dire.  He needed a new 
source of income or his family of 25 was threatened with homelessness.  Happily, 
it turned out that there was another planet, Py, filled with a powerful and equally 
valuable industrial solvent, C2. Py also had an epistemically inhospitable  
environment.  Earth-calibrated sensors seriously malfunctioned on Py, but in very 
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different ways than they did on Px.  So Robby’s sensory apparatus were as useless 
on Py as on earth.  Until, that is, John discovered that, by an accident of cosmic 
good fortune, Robby’s C1-detector-in-Px could, with some accommodation, func-
tion as a C2-detector-in-Py.  The end result is that when Robby is on Py he will 
speak the sentence 

 

“There (pointing to the ground) are approximately 4 kilograms of C1 between .5 
and .75 meters below the surface of the ground. Should I extract it?” 

 

only when there are 40 pounds of C2 (the valuable solvent) between 50 and 75 feet 
below the surface of the ground.  Robby is functioning, on Py, exactly the way 
John wants him to function except for the one inconvenience that many of the 
words that Robby utters must be re-interpreted if they are to have meanings which 
result in Robby’s utterances actually being true.  

John discovers an easy way to solve Robby’s false-utterance problem.  Radio 
Shack has a $3 language translator module that John installs so as to intercept sig-
nals sent from Robby’s linguistic processing center to the voice-box (where it is 
articulated).  The translator module performs a translation function on all sen-
tences with words like ‘C1,’  ‘meters,’ and ‘kilograms.’  It also does a transforma-
tion on numerals, using one function when the numerals are syntactically tied to 
weights and another function for when they are syntactically tied to distances. 

A further benefit of this simple change is that John need not tinker with Rob-
by’s so-called, “beliefs” and “desires.”  Robby’s central cognitive system still out-
puts the sentence 
 

S1: “I want to extract C1 with the goal of providing the world with an effective 
medicine.”  
 

But that is not what anyone hears.  What Robby is heard to say is:  
 

S2: “I want to extract C2 with the goal of providing the world with an effective 
solvent.” 

To prevent a “cognitive” dissonance that might diminish Robby’s performance, 
John buys a second translation device (they’re cheap) and inserts it between Rob-
by’s auditory sensory devices (i.e., microphones) and the linguistic processing 
center so that all references to C2 are re-converted back to references to C1.  The 
result is that what Robby now actually “hears” (or should we say what Robby 
“thinks” he hears) is what he “thinks” he said, which is S1. 

The result is that Robby’s autonomous cognitive engine (which includes his 
“beliefs” and “desires”) outputs sentences like “I love mining C1.”  What we all 
hear Robby say is “I love mining C2” but what Robby hears himself say is “I love 
mining C1.” 

As viewed from the outside, Robby is now effectively receiving information 
about Py and acting intelligently upon that information by extracting C2.  His verbal 
behavior now coheres with his practice.  John describes what he did when he added 
the two translation modules as repairing a defect in Robby’s word-world coupling 
module.  And Kim would be bound to agree since, “intentional states . . supervene 
on behavior” and given Robby’s current behavior, Robby has C2 not C1 intentions. 
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5. CASE #2: Sally my neighbor.  Consider now a second case, in many respects 
similar to the first.  I have a neighbor named “Sally.”  I kidnap Sally and whisk 
her off to an alien planet where her sensory and cognitive faculties completely 
malfunction, but due to a bizarre coincidence, they malfunction in a way that is 
isomorphic to proper cognitive functioning.  When placed on this alien planet, her 
sensory experience makes her (falsely) believe that she is still in an environment 
very similar to her old home on planet earth and to (falsely) believe that she is 
doing the thing she most likes to do – raising flowers.  What she is actually doing 
is mining a valuable compound, C2, which will make me a great deal of money.  
All I need to do to exploit this situation over the long run is to secretly implant 
two translation devices in her brain and . . . . voila.  Sally now has genuine C2-
desires and I have reason to claim that I have successfully repaired a defect in her 
word-world coupling module.   

Notice that in both the Robby and the Sally cases, functional intentionality has 
implications not only for the interpretation of the intentional content, but for the 
very identity conditions for “being Robby” and “being Sally.”  In the Robby Case, 
we get what I will call “the composition problem.”  There seem to be no, non-
arbitrary means of determining whether Robby’s two implanted translation mod-
ules are constitutive sub-systems of Robby himself, or external devices distinct 
from Robby.  If that question has no determinate answer, then questions about in-
tentional content will also remain hopelessly indeterminate. 

Raising “the composition problem” in the Sally Case proves morally offensive.  
If the implantation of the translation modules were, indeed, a way of repairing a 
defect in Sally’s word-world coupling module, then those translation modules 
were not external devices of manipulation that kept her imprisoned within a con-
strictive, epistemic cocoon.  Instead, they were an integral part of her identity, 
quite literally constitutive of what it means to “be” Sally. 

The results that functional intentionality give in the Sally case are quite outra-
geous.  If this is indeed, what the theory prescribes, then the Sally case is a refuta-
tion of the theory.  While there are undoubtedly strategies that the defender of 
functional intentionality will try, the fact that they have to give a plausible out-
come in both the Robby and the Sally cases, limits the kind of rebuttals that will 
be possible.  In contrast to the challenge that these cases pose to functional inten-
tionality, moral status intentionality, produces a very plausible result.  It says that 
intentional content is grounded in those states of Sally that are morally evaluable – 
in particular, her phenomenally conscious states. 

It is absurd (and morally reprehensible) to say that she no longer has a desire to 
raise plants but now has an authentic desire to mine a chemical compound.  Ac-
cording to moral status intentionality, Sally could be on the alien planet for 50 
years and at the point at which she discovers her situation and screams: “You have 
wronged me.  I thought I was raising plants all these years and I was not!” she will 
not be uttering a trivially false statement about C2 (remember ‘plant’ means  
‘C2’ according to functional intentionality) she will be uttering a true and  
morally damning judgment of the suffering I caused her by thwarting her authentic 
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intentions.2 It matters to her that we properly interpret her utterances and her men-
tal states.  And it is only because they matter to her (since she is a moral patient) 
and she matters to us (since we have obligations to her), that we are able to identi-
fy the proper and determinate content of her utterances and that we have grounds 
for saying that the dual translation modules are, indeed, external devices causing 
moral harm. 

 
6. A defender of functional intentionality might attempt to resist the foregoing ar-
gument by appeal to an externalist theory of reference-fixing.  One of the per-
ceived strengths of the theory is its ability to account for reference-shifting when 
intentional agents move from one environment to another.  Might not an external-
ist theory of reference eliminate the indeterminism problems just raised?  I will 
seek to show that the Robby argument is not vulnerable to any commonly ac-
cepted features of externalist reference-fixing.  Furthermore, the externalist ac-
count of reference-fixing itself succumbs to precisely the same type of counterex-
amples that we have seen in the Robby and Sally cases.  The situation requires 
explanation. 

Consider Putnam’s famous case about Oscar on Earth and Twin Oscar on Twin 
earth (Putnam 1975).  Twin Earth differs from earth only in this regard: Every 
place you find water (H2O) on Earth you find twin-water (XYZ) on Twin Earth, 
but the two liquids are qualitatively indistinguishable. Assume that Oscar is trans-
ported to Twin Earth without his knowledge (analogous to Robby’s move from Px 
to Py).  Since Twin-water is indistinguishable from water, Oscar will continue to 
use the English term, ‘water,’ to refer to it.  But what does the word, ‘water,’ mean 
when he points to a lake filled with XYZ and says: “That is beautiful water”?  The 
standard position is that on the first day that Oscar arrives on Twin Earth ‘water’ 
still refers to H2O, and so his utterance is false.  But if he stays on Twin Earth long 
enough, the reference will eventually shift (just as the meaning of ‘Madagascar’ 
shifted over time in our own language).  Words refer to whatever it is that causally 
regulates their use, and if that causal connection shifts (for long enough) so too 
will the extension of the term. 

Let’s consider how this account of reference-fixing might alter the Robby case.  
When Robby first arrives on Py, C1-utterances will continue to refer back to C1 on Px, 
until some length of time, t, after which Robby’s tenure on Py will have been long 
enough to shift the reference from C1 on Px to C2 on Py.  Of course, after t, it is not 
simply the meaning of Robby’s words that have shifted, it is also the content of his 
propositional attitudes.  All of his hopes, dreams, and desires that used to be about C1 

are now about C2.  And, of course, all the same things apply to the Sally Case.   

                                                           
2 As I have claimed here, Sally’s moral utterance condemning my vicious betrayal – even if 

she has lived on the alien planet for 50 years – demands that we interpret her term ‘plant’ 
as referring to biological plants back on earth and not C2 on the alien planet.  This is 
compatible, however, with the view that there may well be other utterances of Sally’s, al-
so using the linguistic token, ‘plant,’ that might indeed refer to C2.  This does not lead to 
contradiction, but in fact solves many semantic dilemmas, if one embraces the view that I 
have labeled semantic dualism.  That theory is explained and defended in (Anderson 
1995). 
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At this point the reader might be wondering why the author went to so much 
trouble to generate the overly complicated story of Robby and the dual translation 
modules.  Doesn’t the direct theory of reference generate the same phenomenon 
by itself?  If I wanted to “get away with murder,” as it were, by deceiving Sally so 
that she would become my “unwitting slave,” all I needed to do would be to get 
Sally to the alien planet long enough so that the extension of all of her terms 
shifted.  At that point, her word, ‘plant,’ would – through no work of my own – 
come to refer to C2 and “voila” she will have instantly gained a new, genuine de-
sire to mine C2 replacing her desire to raise flowers.  And if she has a genuine de-
sire to mine C2 then I have instantly been redeemed from being a heartless mon-
ster, and am now an innocent bystander, receiving her “gifts” of C2 freely given, 
no longer coerced without her consent.  (The reader should also note that the fact 
that Sally is no longer being deceived even though she has no first-person aware-
ness that she is sending a chemical compound rather than flowers is precisely the 
threat to “self-knowledge” that has plagued externalist theories of reference and 
that has generated literally hundreds of articles and books on the topic.) 

What should now be clear is that what plagues functional theories of intentio-
nality also plagues externalist theories of reference.  If all that was needed was a 
counterexample to functional intentionality, it would have been sufficient to offer 
straight, non-translation-module versions of both the Sally and the Robby cases.  
Functional intentionality gets them both wrong, even without translation modules.  
Functional intentionality says that after being on the alien planet for some period 
of time, t (a week, a month, 6 months?), Sally’s mental representations of and lin-
guistic references to ‘plants’ shift and their intentional content becomes C2 (on the 
alien planet), rather than biological plants (on earth).  Robby’s content shifts simi-
larly from C1 to C2.   

Moral status intentionality gives a different result.  In Sally’s case, intentional 
content is determined by the phenomenally conscious states that ground Sally’s 
status as a moral patient/agent.  If at some future point, her epistemic situation was 
no longer defective, and she became (phenomenally) aware of the truth about the 
environment she inhabited, it would be obvious to everyone (regardless of what 
theory of intentionality you officially profess), that the sentences of outrage that 
she would utter at that point using the word, ‘plant,’ would not refer to C2. 

Likewise, there is a problem with functional intentionality’s interpretation of 
Robby.  There is also no time, t, at which his intentional content shifts ineluctably 
from C1 to C2.  As argued above, there exists no no-arbitrary grounds upon which 
one could assign any duration to t.  It is perfectly reasonable for John to interpret 
Robby’s C1-utterances as meaning, C2, the moment Robby steps on planet Py.  
The only kind of content that Robby’s utterances carry is derived content based on 
the assignments that John has an interest in making.  Externalist theories of refer-
ence-fixing (absent the contributions of moral status and/or phenomenal intentio-
nality) lack the resources to even articulate a theory of reference-shifting, because 
there are no resources available to assign any determinate value to t.  Whatever in-
tuitions we have about a reasonable length for t, they clearly derive from  
our judgments about human semantic interests (in cases like, ‘Madagascar’)  
that already smuggle in the utilitarian harm and benefit that come from different 
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assignments of content.  The indeterminism about the length of t is just one more 
species of content indeterminism. 

If the important work could have been done without them, why does the prima-
ry argument of this paper rely on the seemingly gratuitous features of Robby (and 
Sally) with two implanted translation modules?  Very simple.  Discussions of con-
tent indeterminism are legendary and ubiquitous.  Discussions of agent indeter-
minism are considerably less so.  I believe that is primarily a consequence of the 
fact that Dennett is one of the few who raises the issue of agent indeterminism and 
does it in the form of global agent indeterminism which leads to the outright rejec-
tion of non-derived intentionality.  Most philosophers respond by saying that  
(1) intentionality obviously exists (so we must reject Dennett’s arguments), and 
(2) it is just one more “line-drawing” problem and everyone has line-drawing 
problems so there is no reason to think it has to be fatal. 

My goal in introducing the “Robby-plus-dual-translation-modules version” of 
the argument is to confront defenders of non-eliminativist functional intentionality 
with “the composition problem” – a problem of agent identity indeterminism that 
is not so easily dismissed. 

 
7. And now for two concluding remarks.  First, if you want to build a robot with 
genuine intentionality, then build one that has a moral status – create one that is an 
object of moral concern. I have grounded moral concern in phenomenal con-
sciousness, because I cannot conceive of anything else that might be the source of 
intrinsic moral value.  If there is nothing else, then moral status intentionality has 
the same extension as phenomenal intentionality (at least in the actual world).  But 
I could be wrong.  There might be some other property that has intrinsic value 
(and/or disvalue) – call it “v-ness.”  If there is, then phenomenal consciousness is 
not the only property that could determine that a thought had C1 rather than C2 
content and phenomenal consciousness will not be a necessary condition for inten-
tionality.  (Maybe it is even possible that there be a conscious creature whose phe-
nomenal states have no intrinsic moral status because they have no valence: being 
wholly neutral with no positive or negative value.  In that case, phenomenal con-
sciousness would not even be sufficient for disambiguating the C1 vs. C2 indeter-
minism.  Maybe this is possible – I’m undecided.) 

And finally, I would like to suggest that there is one more way that moral status 
might have the last word even if it loses the theoretical battle.  I believe that there 
is no escaping the influence of moral status even if it turns out that functional in-
tentionality is true and moral status intentionality is false.  In an attempt to make 
the issue vivid, let me concede everything in the theoretical realm to the functio-
nalist.  Your theory is true; mine is false.  I was wrong in thinking that there are 
only two fundamental categories of being: (A) things lacking both intentionality 
and phenomenal conscious, and (B) things possessing both phenomenal con-
sciousness and intentionality.  In concede the possibility of a third category,  
(C) things (like Robby) that lack phenomenal consciousness yet possess genuine  
intentionality. 
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Now let us return to John’s moral dilemma. What will change in his judgments 
about the situation if he concedes that Robby is an example of category (C)?  John 
now believes that Robby lacks moral status (because he lacks phenomenal con-
sciousness) yet possesses genuine intentionality.  What should John do?  If he 
doesn’t attach the translation devices, 25 people in his family suffer and may die.  
If he attaches the translation devices, he will not cause any phenomenal suffering 
but he will prevent Robby from achieving the objects of Robby’s intentional states 
(at least prior to the passing of time, t).  Is he wrong to do this?   

This is a moral question, not a metaphysical one.  In John’s moral reasoning, 
what moral weight should be given to “thwarting the genuine intentions of a sys-
tem lacking phenomenal consciousness”? A little? A lot? None? And to whatever 
answer is given, Why?  John must weigh the harm that he does to his family (by 
making all 25 of them homeless) against the harm he does to Robby (by implant-
ing the translation devices).   How would you make that judgment?  

I suggest that it doesn’t matter if we attribute intentionality to Robby.  If the 
kind of intentionality we confer on Robby is a morally irrelevant (or, at the most, a 
morally negligible) non-phenomenal kind of intentionality, then as a matter of 
practical fact and for very compelling moral reasons we will treat systems like 
Robby (which have intentionality but no phenomenal consciousness) more like 
thermostats than like humans.  Robby will have gained an intentional status above 
thermostats, but if that is not accompanied by a similar gain in moral status, then it 
will be a hollow victory.  It will have attained the “status” of an intentional agent, 
but no one will much care because then the salient property will be “moral status + 
intentionality,” even if we assume that intentionality can be functionalized.3 
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Risks and Mitigation Strategies for Oracle AI 

Stuart Armstrong 

Abstract. There is no strong reason to believe human level intelligence represents 
an upper limit of the capacity of artificial intelligence, should it be realized. This 
poses serious safety issues, since a superintelligent system would have great 
power to direct the future according to its possibly flawed goals or motivation 
systems. Oracle AIs (OAI), confined AIs that can only answer questions, are one 
particular approach to this problem. However even Oracles are not particularly 
safe: humans are still vulnerable to traps, social engineering, or simply becoming 
dependent on the OAI. But OAIs are still strictly safer than general AIs, and there 
are many extra layers of precautions we can add on top of these. This paper looks 
at some of them and analyses their strengths and weaknesses. 

 
Keywords: Artificial Intelligence, Superintelligence, Security, Risks, 
Motivational control, Capability control. 

1   Introduction 

While most considerations about the mechanisation of labour has focused on AI 
with intelligence up to the human level there is no strong reason to believe humans 
represent an upper limit of possible intelligence. The human brain has evolved 
under various biological constraints (e.g. food availability, birth canal size, trade-
offs with other organs, the requirement of using biological materials) which do not 
exist for an artificial system. Beside different hardware an AI might employ more 
effective algorithms that cannot be implemented well in the human cognitive 
architecture (e.g. making use of very large and exact working memory, stacks, 
mathematical modules or numerical modelling), or use abilities not feasible to 
humans, such as running multiple instances whose memories and conclusions are 
eventually merged. In addition, if an AI system possesses sufficient abilities, it 
would be able to assist in developing better AI. Since AI development is an 
expression of human intelligence, at least some AI might achieve this form of 
intelligence, and beyond a certain point would accelerate the development far 
beyond the current rate (Chalmers, 2010) (Kurzweil, 2005) (Bostrom N. , The 
Future of Human Evolution, 2004).  
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The likelihood of both superintelligent and human level AI are hotly debated – 
it isn’t even clear if the term ‘human level intelligence’ is meaningful for an AI, as 
its mind may be completely alien to us. This paper will not take any position on 
the likelihood of these intelligences, but merely assume that they have not been 
shown to be impossible, and hence that the worrying policy questions surrounding 
them are worthy of study. Similarly, the paper will not look in detail at the various 
theoretical and methodological approaches to building the AI. These are certainly 
relevant to how the AI will develop, and to what methods of control will be used. 
But it is very hard to predict, even in the broadest sense, which current or future 
approaches would succeed in constructing a general AI. Hence the paper will be 
looking at broad problems and methods that apply to many different AI designs, 
similarly to the approach in (Omohundro, 2008). 

Now, since intelligence implies the ability to achieve goals, we should expect 
superintelligent systems to be significantly better at achieving their goals than 
humans. This produces a risky power differential. The appearance of 
superintelligence appears to pose an existential risk: a possibility that humanity is 
annihilated or has its potential drastically curtailed indefinitely (Bostrom N. , 
Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards, 
2001). 

There are several approaches to AI risk. The most common at present is to hope 
that it is no problem: either sufficiently advanced intelligences will converge 
towards human-compatible behaviour, a solution will be found closer to the time 
when they are actually built, or they cannot be built in the first place. These are 
not strategies that can be heavily relied on, obviously. Other approaches, such as 
balancing superagents or institutions (Sandberg, 2001) or “friendly utility 
functions” (Yudkowsky E. , Creating Friendly AI, 2001) (Yudkowsky E. , 
Friendly AI 0.9., 2001), are underdeveloped. 

Another solution that is often proposed is the so-called Oracle AI (OAI)1. The 
idea is to construct an AI that does not act, but only answers questions. While 
superintelligent “genies” that try to achieve the wishes of their owners and 
sovereign AI that acts according to their own goals are obviously dangerous, 
oracles appear more benign2. While owners could potentially use them in selfish 
or destructive ways – and their answers might in themselves be dangerous 
(Bostrom N. , 2009) – they do not themselves pose a risk. Or do they? 

This paper attempts to analyse the problem of “boxing” a potentially unfriendly 
superintelligence. The key question is: how dangerous is an Oracle AI, does 
boxing help, and what can we do to reduce the risk? 

 

                                                           
1 Another common term is “AI-in-a-box”. 
2 Some proponents of embodiments might argue that non-embodied AIs are impossible – 

but it is perfectly possible to have an embodied AI limited to a particular “box” and have 
it only able to interact with the world outside the box through questions. 
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2   Power of AI 

A human-comparable mind instantiated in a computer has great advantages over 
our biological brains. For a start, it benefits from every iteration of Moore’s Law, 
becoming faster at an exponential rate as hardware improves. I.J. Good suggested 
that the AI would become able to improve their own design, thus becoming more 
intelligent, leading to further improvements in their design and a recursive 
intelligence explosion (Good, 1965). Without going that far – it is by no means 
obvious that the researcher’s speed of thought is the dominating factor in Moore’s 
Law – being able to reason, say, a thousand times faster than a human would 
provide great advantages. Research of all types would become much faster, and 
social skills would be boosted considerably by having the time to carefully reason 
out the correct response. Similarly, the AI could have access to vast amounts of 
data, with huge amounts of information stored on expanding hard drives (which 
follow their own Moore’s Law  (Walter, 2005)). So an AI would be able to think 
through every response thoroughly, carefully researching all relevant data, without 
any humans-noticeable slow-down. 

Software can not only be run faster with more data, it can also be copied and 
networked. An AI need be only trained in a particular skill once; from that point 
on, it can be copied as much as required. Similarly, if AIs are subject to human-
like vicissitudes, such as fatigue or drop in motivation, this can be overcome by 
taking the entity at the peak of its energy or motivation, and reloading this every 
time the AI starts to weaken. One could use this, for instance, to select AIs at 
moments when they are particularly successful at group-interactions. Thus a group 
of AIs, trained in different skills and with compatible motivations, could be 
networked together into a super-committee. Such super-committees are a likely 
stable organism (see (Shulman C. , 2010) for the full version of this argument) and 
could become what people refer to as “an AI”. Their abilities would likely be a 
superset of any human committee: a major bottleneck in human organisations is 
the ability to share information rapidly and work well together. Thus no human 
group could out-think them, and with the ability to be trained once and copied at 
will, they could be used in any and all roles that humans fill today.  

Another factor to consider is that evolution has made humans very skilled at 
social abilities and spatial recognition, but less so at scientific and technical 
abilities. So a “human comparable AI” that matches our social skills (a la Turing 
test  (Turing, 1950)) is likely to be much more skilled than us at these scientific 
and technical tasks; even if it isn’t, it’s likely to have a superior ability to interact 
with other softwares that do have these skills. 

Above-human intelligence AIs would be even more impressive, of course, if 
ever they existed. If we just constrained the AI into a box, interacting with it only 
through text messages, then we would be safe, surely? 
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3   Introducing the Oracle 

That is precisely what an Oracle AI is: a confined AI with no physical 
manipulators, with which we can only interact through text messages. Though it 
feels superficially safer, this still leaves us vulnerable to the OAIs most dangerous 
tool: social engineering, the OAIs fastest way of getting power for itself. 

Even humans can get themselves ‘unboxed’ purely through arguing. Eliezer 
Yudkowsky has performed experiments where he took on the role of a boxed AI, 
and others took the position of a putative gate-keeper (with a $10 reward if they 
did not let him ‘out of the box’, meaning granted it full access to the outside 
world). Despite being of human intelligence himself, in three out five attempts, he 
was able to convince the gatekeepers, purely through argumentation, to let him out 
(Yudkowsky E. , 2002). 

A real OAI should be much more skilled at this: we should think of the OAI as 
composed of a committee of extremely smart and convincing people, working 
together perfectly at high speeds. Or, to shift the intuition pump, if we were the 
OAI, with these sorts of intellectual resources, would we not be able to persuade, 
trick or trap ourselves out of the box? Most people can think of three or four 
plausible methods that could work; we can rest assured the OAI would think of 
these, and better ones, and be capable of implementing it to the best of its ability, 
if it wanted to. 

We are all vulnerable to the OAI’s social engineering. An advanced OAI can 
literally offer us the world. Genuine altruism is no defence against this; it can offer 
a world free of poverty, hunger, war, disease or death, as well as all personal 
trinkets we could want. It could guess the weaknesses of each individual, and find 
the right arguments to convince us that granting it power or liberty is the moral 
and profitable thing to do. It will be able to play on rivalries, institutional 
weaknesses and ethical dilemmas with more virtuosity than any human could. 

On top of that, the OAI can always trick us with brilliant technology with 
undetectable ‘poison pills’, or simply become so important to human economy or 
human society that we dare not turn it off, whatever it does. In no way could a 
superintelligent AI be considered ‘safe’ merely because it is boxed. 

4   Why Box the Oracle At All? 

In view of the preceding, one could wonder why one should study Oracles at all. If 
the Oracle will inevitably convince or trick its way out of the box if it wants to, 
why bother investing in this type of precaution – shouldn’t all our efforts be 
devoted to preventing general AI from being developed in the first place? It is 
unlikely that we can convince the world to back off from AI research, or permit 
the draconian checks that would reliably prevent narrow AI research from leading 
to general artificial intelligence. But trying along these lines is likely to have a tiny 
but real effect, whereas worrying more about Oracles seem to have no impact. 
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This is too extreme a position to take. Precautions are useful, even if they are 
imperfect. A well designed physical boxing system would prevent the OAI from 
escaping other than through social engineering. And there are myriads of clever 
ways an OAI could physically escape, if it had access to a manufacturing base; 
taking these off the table is a definite achievement. 

Secondly, a safe Oracle is strictly easier that a safe autonomous AI, even one 
that also lacked a manufacturing capability. To see this, consider all the different 
groups in the world with different agendas and preferences, from libertarians to 
communists, democrats, nationalists, Kantians, utilitarians, religious groups, neo-
Nazis, environmental groups, advocates of free love... The list goes on. If any of 
these groups were to build an autonomous AI that they felt was “safe”, it would 
have to be imprinted with most of their values, which would differ from the values 
of the other groups. But if they wanted to build a safe OAI, they would all agree 
on what this constituted: an AI that stayed confined in a box and answered 
questions accurately. To phrase this colloquially, the difference between Hitler 
and Gandhi is not relevant for safe OAI (but is relevant for safe AI). It is difficult 
to estimate how much easier an OAI is, but if we use approximate Kolmogorov 
complexity (Solomonoff, 1960) as a heuristic, then we can see that the values and 
desires of these different groups require a lot of description, making general safe 
AI many orders of magnitude harder than safe OAI. We don’t need to take this 
argument too literally in order to agree with the general point: pushing for OAI 
over general AI can make a huge difference. 

But lastly, we don’t need to just box the OAI, pick the least corruptible 
gatekeeper we can find, and hope for the best. Once boxed, there are many 
supplementary methods of control we can add on. Methods of capability and 
motivational control can all be layered over the basic AI framework, and we can 
add checks and traps to ensure that the OAI is actually behaving well. Looking at 
these “methods of control” will be the subject of the next section, though a more 
thorough analysis can be found in our paper (Armstrong, Sandberg, & Bostom, 
Thinking Inside the Box: Using and controlling an Oracle AI, 2011), which 
elaborates on all these methods. 

5   Methods of Control 

The different methods can be loosely grouped into three broad types. The first 
category, capability control, deals with those methods that try to contain the OAI 
through physically securing it or controlling the information it has access to or can 
output. The second category, motivational control, introduces methods of control 
the OAI through its motivation, ensuring that it has not propensity to cause any 
harm to humans. And lastly, there are some methods designed not to prevent the 
OAI from causing harm but to catch it when it does; these are in the checks and 
balances category. It should be noted that, depending on the design of the OAI, 
some methods may be impossible (such as rule or utility based motivational 
control). Since the design of the OAI is not known, we won’t rule out any methods 
on these grounds. 
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5.1   Capability Control 

Capability control is the most basic and the most obvious of way of controlling the 
OAI. To control a human, we put them in solitary confinement, denying them 
interactions with the outside world. Similarly for an OAI, the first, minimum steps 
should be to restrict its means of influencing the world: that is essentially what 
boxing means. 

The most basic methods are physical capability control. The OAI should be 
confined to a box. The ‘box’ might be a Faraday cage, filled with inert gases (or 
with nothing at all). The OAI should be denied manipulators, and ideally would 
have no/little control over any apparatus with moving parts – anything to prevent 
it from building a manufacturing capability. The cage could be surrounded with 
high explosives, triggered by some willing gatekeeper, and the whole set-up could 
be buried in a concrete bunker. There are no real limits to the number of physical 
security measures that can be added by wary or paranoid developers, and their 
effects are well understood – though we are far more likely to succeed with 
‘dumb’ precautions: an OAI could conceivably hack an extremely advanced 
security lock with a blinking light, but couldn’t kick down a wall without limbs. 

Another possibility is to use epistemic capability control, to reduce the OAI’s 
epistemic rather than physical abilities. It would be very useful to throttle the 
OAI’s output, reducing the bandwidth it can use. If the OAI is reduced to 
outputting only three answers – ‘yes’, ‘no’ or ‘undetermined’ – then it will take 
considerably longer for it to mount a successful social engineering attack. The 
risk, of course, is that the more opportunities the OAI has in answering, the more 
opportunity there is of it passing on a secret message. In the same way giving the 
OAI more possibilities for each answer – such as allowing it to output the first 
three significant figures of a probability estimate – increases the risk (though this 
may be compensated by the fact that we will need to ask less follow-up questions). 
And it does not prevent the OAI from manipulating us through the contents of its 
answers, pushing human development is certain directions. 

Other epistemically plausible measures, in order of decreasing usefulness 
(Armstrong, Sandberg, & Bostom, Thinking Inside the Box: Using and controlling 
an Oracle AI, 2011) would be to reset the OAI after each run, add ‘fake levels of 
reality’ by running on virtual machines inside other virtual machines, and 
throttling the OAI’s input. Resetting the OAI prevents certain types of long term 
plans from emerging while fake levels of reality are useful if the OAI is a highly 
technical entity asked highly technical questions. 

Throttling the OAIs input is likely to be less useful: the OAI can deduce huge 
amounts of information from any question we ask and any information we give it. 
This can be best seen from the Kolmogorov complexity perspective (Solomonoff, 
1960)). Since we cannot compute the Kolmogorov prior, but any superintelligence 
would approximate it better than we can, we cannot know how much information 
we are inadvertently giving it through our inputs (outside of certain closed 
situations). The potential for considerable undetected giveaways is immense, and 
these are errors we couldn’t even know we had committed. 
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5.2   Checks and Balances 

This sub-category of methods of control involve not restricting the physical 
capability of the OAI, nor directly interfering with its motivation, but attempting 
to catch the early stages of an OAI behaving dangerously (and then, presumably, 
terminate it). This also works on the OAI’s motivation, as the risk of getting 
caught would push the OAI along more human-friendly paths. It should always be 
assumed that a useful OAI is considerably more intelligent than its programmers, 
so any naive ‘tricks’ are unlikely to work. 

Nevertheless, we can get some mileage by testing a random selection of the 
OAI’s answers. If we only gave the OAI questions that we ourselves could solve, 
given enough time, and if we exhaustively tested, say, a thousand of the answers it 
gave, then we would have a pretty good estimate of its trustworthiness, no matter 
how many questions we asked. The most important aspect of this is that the tested 
questions be selected at random, after the OAI has given its answers (a sort of 
‘double blindness’ for questions). Asking specific test questions is a no-no; if the 
OAI can deduce that a certain question will be tested, it may answer differently on 
it. 

Less convincing is the idea of leaving tempting ‘honey-pots’ of great value to 
the OAI – extra resources, extra information, the answer it is seeking – in physical 
or mental locations that it is forbidden from accessing. And then waiting to see 
whether it will violate its instructions to do so. This approach is of mixed use: 
important when testing out defection and betrayal during the OAI’s initial 
development, and nearly completely useless once the OAI has risen to super-
intelligence. It is a ‘garden of Eden’ type scenario: the apple in a tree is only a 
worthwhile test while Adam and Eve are dumb; if they were smarter than God, 
they wouldn’t have gone anywhere near such an obvious trap. 

Finally, we might play multiple (but slightly different) OAIs against each other, 
by asking them the same question while preventing them from communicating 
with each other. The OAIs are then confronted with the choice between answering 
truthfully and telling a lie; but for the lie to work, all OAIs would have to stumble 
upon the same one. If the OAIs are quite different, and especially if their 
motivations are different and unknown to each other (a rare case where throttling 
the OAIs input will be of use), then they are unlikely to stumble upon the same lie, 
and may be compelled to tell the truth. 

5.3   Motivational Control 

The main area for potential improvement in OAI control rests in motivational 
control. Capability control is useful, but we probably already have a good idea of 
how to do it. Checks and balances are probably too uncertain to rely on. So the 
gains from further study in these areas are probably minor. 

If we could solve the motivational control problem completely, then we would 
solve the OAI problem completely: we would have a friendly AI (Yudkowsky E. , 
2001a) (Yudkowsky E. , 2001b). But even partial improvements can increase our 
chances of a safe OAI, especially given the other methods of control we have. 
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It is essentially a problem of reverse ethics: we know approximatly what we 
want the OAI to do (stay inside the box, answer questions truthfully, don’t plot 
against us). And we seek to find the OAI motivations that will result in this 
happening. Then, of course, once we have found the correct motivations, we want 
to ensure that the OAI actually follows them. 

There is a certain tension between these two goals: motivations which will most 
likely be the safest are not those which are easy to check that the OAI is 
implementing. The grading runs from black box motivations (such as 
reinforcement learning), through rule-based motivations (such as direct 
programming) to utility function based motivations. It is much easier to “teach” an 
AI to be safe through reinforcement learning than to spell out explicitly the utility 
function that would accomplish the same thing. But conversely, it is much easier 
to check that an AI is implementing a utility function than to be sure that the 
messy incomprehensible result of reinforcement learning is actually doing what 
we hope it is. 

5.3.1   Rule-Based Motivational Control 

Rule-based methods are the ones that spring most naturally to mind, and – 
provided the terms are clearly defined – potentially the most secure at keeping the 
OAI under control. Defining the terms and the rules so that the OAI does what we 
want is the challenge; programmers know many examples of tightly written code 
that messes everything up by doing exactly what it was written to do but not what 
it was intended to do. The story stretches back as far as the golem of Prague (Idel, 
1990), and is familiar to any parent: rules must be refined to deal with every 
imaginable special case. 

The biggest challenge is to define space and time. If the OAI can have a correct 
understanding of space and time, many other restrictions can be easily added to it. 
But to achieve this through direct programming, an ontology must be specified, 
that the OAI can understand in the same way that we do. It must be able to 
understand its own existence, its physical location, the proper workings of 
causality, and its own position within the causal network of the universe – i.e. the 
consequences of its actions. 

For instance, to specify what constitutes the OAI, one would presumably define 
the physical OAI itself, along with any copy of its code, any copy of its code with 
slight modifications, any code with functionally similar behaviour, any 
assemblage of subprograms that combine to behave as the OAI would, and so on. 

That brief list gives an idea of the problems involved; all the human-
understandable terms of the previous paragraph need to be made rigorous for the 
OAI for this approach to work. There is a similar challenge with time. An OAI 
that can freely redefine its own chronology is a security risk. The risk becomes 
more acute when we realise how much of human definitions and meanings revolve 
around a concept of time, and thus that redefining duration can redefine meaning. 
To illustrate with an admittedly trivial example, if the OAI had the reasonable-
sounding moral premise that “painlessly killing a human being, who is going to 
die in a micro-second anyway, in order to gain some other good, is not a crime”, 
we would not want it to be able to redefine millennia as seconds. Nor would we 
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want it to do this when considering the length of happiness or pain that it grants or 
imposes on us. More subtle errors will certainly creep up in more complicated 
scenarios; we have had little experience dealing with beings that can redefine their 
own clocks, so we have not had to spell out how many of our assumptions rest on 
this not happening. 

Once time and space are defined, other problems become easier – though not 
easy. Confining the OAI to stay in the box involves defining “the OAI” 
(presumably including all exact copies, all similar copies, all instantiation of 
algorithmic systems that would be similar to the OAI, and maybe those that would 
have similar goals) and “the box” (an easier problem) and “staying in” (a harder 
problem – waste heat reaching the outside world from the OAI is ok, but building 
a laser to blast the outside is not). We also must preclude the possibility of the 
OAI discovering a new theory of physics, realising that ‘electrons’ or ‘wave-
functions’ don’t actually exist, and thus that all its restrictions are meaningless. 

With space and time well in hand, we can define other rules, requiring the OAI 
to answer within a certain time frame, to use only specific resources (if we can 
define those), and to respect other constraints we may want to define. 

5.3.2   Black-Box Motivational Control 

Human feedback, and such methods as reinforcement learning (Sutton & Barto, 
1998), can allow programs to internalise complex concepts without humans 
having to fully specify them. Indeed, an OAI trained in this way may spot a 
pattern we didn’t realise was there, and ‘know some things without us needing to 
tell it’. The risks are that we can’t be sure how the OAI internalises these 
concepts: knowing its code doesn’t help us if we don’t understand it. The risk is 
especially great when the OAI transitions out of its learning stage: we cannot be 
sure that the same concepts mean the same thing for an OAI that has taken on a 
new “role”. 

But, if the OAI does understand the concepts as we intend it to, we can be sure 
that the OAI will obey the spirit and not the letter of these restrictions. Moreover, 
it is possible that we may understand the resulting code’s behaviour, even if we 
could not code it in ourselves: this would be the ideal outcome from these 
methods. 

Even without that unlikely ideal, it is important that these methods be well 
understood, since it is very possible that a seed AI (Yudkowsky E. , General 
Intelligence and Seed AI 2.3) will be trained mainly by human feedback. 

Some of the problems touched upon for rule-based motivations are easier to 
solve using black-box methods. The AI can be trained to recognise time through 
the tick of a clock; to internalise spatial restrictions through experience in 
embodiment (Steels & Brooks, 1995) or to come to think of themselves as “one 
copy” through similar methods. These methods are somewhat more robust to 
changes in ontology, not being so dependent on getting the definitions exactly 
right. 

There still remain grave risks for complex questions whose definitions are 
unclear to us, and when the OAI is placed in situations far removed from its 
training environment. And this approach also trains the OAI in the skills and 
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usefulness of social engineering: it will learn that certain specific responses 
increase the likelihood of reward, and will extensively model the complex system 
– us – that is most responsible for these rewards. 

5.4   Utility-Based Motivational Control 

The ultimate goal of the friendly AI project (Yudkowsky E. , 2001a) (Yudkowsky 
E. , 2001b) is to design a utility function for an AI that will provably prevent the 
AI from acting in a way detrimental to humanity. Most work in this field has not 
actually been directed towards building such a utility function, but towards 
showing how hard it would be to do so, and how dangerous the naive ideas on the 
subject are. 

The friendliness problem for an OAI is not much simpler, making this a very 
hard approach to use. And if a friendly OAI could be designed, then it is most 
likely that a friendly AI could also be designed, obviating the need to restrict to an 
Oracle design in the first place. In practice, however, the best that can be 
realistically hoped for is that different component pieces of friendly AI theory 
could be added onto an OAI as extra precautions. 

Even without a full friendly utility function, there are some tools specifically 
available for utility based OAI. For instance, we could impose a high discount rate 
on the utility, to prevent the OAI from planning to far ahead. Other more exotic 
manipulations of the OAIs utility function should also be possible; one is detailed 
in (Armstrong, Utility Indifference, 2010). This updates the OAI’s utility function 
so that it is indifferent to the consequences of a single probabilistic event, and 
could be used to make it indifferent to the explosives packed around it, or, more 
interestingly for an Oracle, indifferent to the consequences upon humans of its 
answers. 

5.5   Extra Measures 

An important aspect of the whole OAI design is that there are many extra methods 
that can be implemented and added on top of the basic measures. Exotic methods 
such as proxy measures of human survival and utility indifference are detailed in 
our paper (Armstrong, Sandberg, & Bostom, Thinking Inside the Box: Using and 
controlling an Oracle AI, 2011). 

6   Conclusions 

Analysing the different putative solutions to the OAI-control problem has been a 
generally discouraging exercise. The physical methods of control, which should be 
implemented in all cases, are not enough to ensure safe OAI. The other methods of 
control have been variously insufficient, problematic, or even downright 
dangerous. 

It is not a question of little hope, however, but of little current progress. Control 
methods used in the real world have been the subject of extensive theoretical 
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analysis or long practical refinement. The lack of intensive study in AI safety 
leaves methods in this field very underdeveloped. But this is an opportunity: much 
progress can be expected at relatively little effort. There is no reason that a few 
good ideas would not be enough to put the concepts of space and time on a 
sufficiently firm basis for rigorous coding, for instance. 

And even the seeming failures are of use, it they have inoculated us against 
dismissive optimism: the problem of AI control is genuinely hard, and nothing can 
be gained by not realising this essential truth. A list of approaches to avoid is 
invaluable, and may act as a brake on AI research if it wanders into dangerous 
directions. 

On the other hand, there are strong reasons to believe the oracle AI approach is 
safer than the general AI approach. The accuracy and containment problems are 
strictly simpler than the general AI safety problem, and many more tools are 
available to us: physical and epistemic capability control mainly rely on having 
the AI boxed, while many motivational control methods are enhanced by this fact. 
Hence there are strong grounds to direct high-intelligence AI research towards the 
oracle AI model. 

The creation of super-human artificial intelligence may turn out to be 
potentially survivable. 
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The Past, Present, and Future Encounters
between Computation and the Humanities

Stefano Franchi

1 Takeovers

The philosophy of Artificial Intelligence has traditionally focused its efforts on the
critical assessment of concepts and theories emerging from the concrete work done
in Artificial Intelligence and Cognitive Science. Classic examples are the sustained
critique that Herbert Dreyfus has been pursuing since the early 1970s [14, 15, 16]
and John Searle’s critique of “strong AI” [47]. Margaret Boden’s collection [4] epit-
omizes this approach, whose underlying assumption accepts Artificial Intelligence
as a non-philosophical scientific discipline that may be susceptible to the standard
epistemological analysis that philosophers carry out on physics, biology, and other
scientific disciplines.

As several scholars have remarked, however, this approach fails to capture an
essential feature of Artificial Intelligence: many researchers, at least during AI’s
classic period (roughly: 1945-1980, see [21]), interpreted their results as genuinely
philosophical achievements. A close look at the historical record shows that clas-
sic Artificial Intelligence saw itself as “anti-philosophy” [17, 1, 19, 20]: it was the
discipline that could take over philosophy’s traditional questions about rationality,
the mind/body problem, creative thinking, perception, and so on. AI could solve
these problems with the help of radically new synthetic and experimentally based
techniques. The true meaning of such “computational turn in philosophy” lies in
its methodology, which allowed it to associate engineering techniques with age-
old philosophical questions. This “imperialist” tendency of cognitive science was
present from the very beginning, even before the formalization of the field into well-
defined theoretical approaches [17, 49]. Pronounced at the dawn of the Artificial
Intelligence adventure (1948), McCulloch’s famous declaration about the relation-
ship between metaphysics and the emerging science of the mind provides its best
example:
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Sir Charles Sherrington was forced to conclude that “in this world, Mind goes more
ghostly than a ghost.” The reason for his failure was simply that his physics was not
adequate to the problem that he had undertaken. . . . even Clark Maxwell [sic] cut short
his query with the memorable phrase, “but does not the way to it lie through the very
den of the metaphysician, strewn with the bones of former explorers and abhorred by
every man of science?” Let us peacefully answer the first half of his question “Yes,”
the second half “No,” and then proceed serenely. [34, p. 143, my emph.]

The protagonists of classic AI research—from Marvin Minsky to John McCarthy,
from Herbert Simon to Allen Newell—held on to this “dream” well beyond the
demise of the classic GOFAI paradigm [27, pp 631ff.]. Yet, even while stressing its
philosophical character, AI never relinquished its claims to be a scientific discipline,
perhaps even an empirical science [38]. Which kind of hybrid discipline could be
both a science and a metaphysics? Daniel Dennett [12] recognized this problem
when he tried to determine whether we should consider AI a philosophical or a psy-
chological discipline. He reached the conclusion that it sits somewhere in between,
a hybrid form that is too philosophical to qualify as empirical psychology and too
empirical to be considered true philosophy. To increase its some explanatory power,
Dennett’s conclusion should be substantially broadened. AI became a hybrid field
and interpreted itself as both philosophy and science because it was the result of a
specific and historically situated encounter that occurred between digital disciplines
(or, more generally, the “sciences of the artificial,” in Cordeschi’s formulation [10],
hereafter SA) and the Humanities (hereafter, Hum).1 More specifically, Artificial
Intelligence came into being when the “sciences of the artificial” took over from
philosophy, a specific Humanities discipline, a set of open problems and applied
their tools and techniques toward their solution. In short: Artificial Intelligence was
born when the the Sciences of the Artificial took over problems from the Humanities
(and nothing else).

There are two distinct advantages in looking at AI as a particular modality
(takeover) of the possible interaction between digital disciplines and the Human-
ities. First, we may recognize the same modality of interactions between different
Humanities disciplines and their digital counterpart, and learn something, perhaps,
about their intrinsic features. Second, we may find that other modalities of inter-
action have occurred between SA and more traditional disciplines, and speculate
about the possible results of an extension of that modality to the Humanities. Be-
fore exploring alternative modalities, I will first look at another example of SA/Hum
interaction that is remarkably similar to AI’s.

1 Throughout this paper, I assume the fairly standard definition English-language of “Hu-
manities” as the collections of disciplines studying the human condition from a reflective
standpoint. They traditionally include history, anthropology, the study of literature, art his-
tory, philosophy and religious studies. They do not include, however, the visual and per-
forming arts or the social sciences (i.e sociology, psychology, linguistics, etc.) This defini-
tion is similar to the German Geisteswissenschaften and the Italian discipline umanistiche,
while very different from the French “sciences humaines.” Nothing in my arguments de-
pends on the definition of the term, though. I just use it as a convenient shorthand for the
list of disciplines I take it to stand for.
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The traditional birth date of Artificial Intelligence is 1956, when John McCarthy
coined the term during the Dartmouth Summer Research project [32]. Remarkably,
the Digital Humanities (DH) were born around the same years. In 1948, with the
help of post-war reconstruction funds, the Jesuit Father Roberto Busa started work
on the Index Thomisticus, a compilation of all the concepts in Aquinas’s works that
was made available on printed media first and then converted into an online repos-
itory [6, 42]. Even though Father Busa’s pioneering efforts proceeded at a much
slower pace than AI’s, the discipline he founded eventually blossomed into the re-
search area we now call “Digital Humanities” (hereafter, DH).2 DH’s explicit goal
is to exploit digital technology for research in the Humanities.3 This mandate is ex-
tremely broad and potentially open to all kinds of interactions between computing
disciplines and the Humanities. The most common approach, however, still follows
the path Father Busa blazed in 1948 when he managed to convince Thomas Watson
Sr. to let him use IBM machines to build an electronic concordance of Aquinas’s
work. Busa, a scholar of Aquinas’s philosophy, was interested in an interpretive is-
sue: he wanted to find out the meaning of “presence” (praesentia) in Aquinas and
needed to locate all the instances of that word in the corpus. First he did it by hand—
it took more than 10,000 3x5 cards!—then he realized that computing technology
could substantially speed up his work and successfully lobbied IBM for help [55].
Busa was not concerned with the problems and theories that Computer Science, then
a barely emerging field, was starting to discuss. He was interested in applying the
resulting technology to to the problems typical of the Humanities. His approach,
fully inherited by the Digital Humanities, represents the reverse modality of AI’s
approach. In general, the DH use tools, techniques, and algorithms that computer
scientists have developed to address traditional questions about the meaning of texts,
their accessibility and interpretation, and so on [28, 50]). Well-known examples of
this approach include the digitization of canonical texts carried out by the Cervantes
Project [22]; the Dante Project at Dartmouth University [11]; the Perseus Project at
Tufts University [41], and so on.

While AI emerged when computing disciplines took over philosophy’s problems,
the DH were born when the Humanities took over computing tools. AI’s modality
is the same as DH’s, even though the direction of the takeover is reversed. The
common feature of AI and DH is their one-sidedness. In either case, one of the

2 In recognition of his founding role in the discipline, since 1998 the Association for the Dig-
ital Humanities (ADHO) Busa Prize is awarded to recognize outstanding lifetime achieve-
ment in the application of information technology to humanistic research. The first ADHO
Busa Prize was given to Father Busa himself “in honor of the monumental achievement of
the Index Thomisticus, the commencement of which is generally regarded as marking the
beginning of the field of computing in the humanities, and the completion of which, one
of the field’s finest results.”

3 For instance, the mission of the recently established “Office of Digital Humanities” of
USA’s National Endowment for the Humanities is stated as follows: “As in the sciences,
digital technology has changed the way scholars perform their work. It allows new ques-
tions to be raised and has radically changed the ways in which materials can be searched,
mined, displayed, taught, and analyzed” [37].
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two partners took over some relevant aspects from the other participant and fit it
within its own field of inquiry (mostly questions, in AI’s case; mostly tools, for
the DH). The appropriation, however, did not alter the theoretical features of either
camp. For instance, AI and Cognitive Science researchers maintained that philoso-
phy’s pre-scientific methodology had only resulted in mere speculations that made
those problems unsolvable. Therefore, the computational approach could not use
philosophy’s accumulated wealth of reflection about the mind, rationality, percep-
tion, memory, emotions, and so forth. In McCulloch’s famous phrase, the “den of
the metaphysician is strewn with the bones of researchers past.”

In the Digital Humanities’ case, the takeover happens at the level of tools. In
most cases, however, this appropriation does not translate into an opportunity for a
critical reflection on the role of the canon on liberal education, or for a reappraisal
of the social, political, and moral roles that the text plays in society at large. In-
stead, in both cases the interaction of a discipline with its counterpart happens only
at the beginning, when a particular problem or tool is chosen. After that initial first
step, the development of a particular field of inquiry is pursued in complete inde-
pendence. Consider, for instance, the development of story-telling programs in AI.
Toward the late 1960s-early 1970s, some AI researchers started to realize that hu-
man understanding tends to be organized by narratives [46]. Therefore, successful
simulations of story-understanding and story-telling performances would constitute
significant progress toward Artificial Intelligence. The first story-telling program—
TALESPIN, by James Meehan—appeared immediately afterwards [36]. The pro-
gram exhibited some interesting performances but, as it was natural with a first
effort, had some serious limitations. It limited itself to very simple narratives within
a very narrowly defined genre. Successive efforts (Universe, Brutus [29, 5]) tried,
with some measure of success, to broaden both the scope and the depth of story-
telling performances. Interestingly enough, though, after AI picked story-telling as
a worthy research goal, no interaction occurred between AI scholars and the very
active research the Humanities were pursuing on that same topic, exactly at the same
time, in the fields of narratology, structural anthropology and structural linguistics,
and so on [30, 3, 25].

We can detect a similar modus operandi in the canonical DH approach. Consider
a recent example, Texas A&M’s Cervantes Project. The project’s original goal was
the production of a critical (variorum) edition of the Quixote on the basis of the
large collection of printed versions that had been previously digitized. That required
the selection of a number of digital tools, which were properly put to use. When the
goal was achieved, the Cervantes project began to move on to a digitization of the
vast iconography associated with the printed versions of the Quixote, this time again
selecting the appropriate digital tools. The next goal may be the digitization of musi-
cal works, such as sound samples, scores, and librettos connected with Cervantes’s
works, a task that will initially require the selection of yet another set of digital
tools. At each iteration, the Humanist chooses a goal and selects the appropriate
digital tools. After the step in question, the connection with the digital technology
no longer has any theoretical or conceptual relevance.
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I want to acknowledge that the takeover approach—whether practiced by AI or
by DH—has now a long and well-established history and has experienced remark-
able successes. AI tools and theories have now become an integral part of every-
day life—as Siri, the virtual agent in the latest generation of iPhones, dramatically
proves. Similarly, DH has radically changed the modes of access to canonical liter-
ary works and greatly expanded the research question we can ask those texts (or, at
least, greatly sped up their processing).

The recent history of AI and DH research shows us that the classic takeover
approach can be substantially weakened by entering more sustained interactions be-
tween the communication partners. For instance, AI’s work in embodied cognition
can be seen as the result of a more intense cooperation between computer scientists
and philosophers who, after questioning some of the basic issues arising from the
classic GOFAI paradigm (such as the frame problem), began to offer their own solu-
tions instead of limiting themselves to provide a repertoire of problems to be solved
[7, 44]. Similarly, a DH projects like the multimedial/multimodal journal Vectors
goes beyond the mere import of digital tools to address traditional Humanities is-
sues, and recognizes “that it is imperative that [the DH] be involved in the design
and construction of the emerging networked platforms and practices that will shape
the contours not only of our research, but of social meaning and being for decades
to come” [35, p. 123]. The mappae project [31, 24] increase the interaction be-
tween Humanists and computer scientists in yet another direction. Their starting
point is the usual DH strategy to digitize textual data: the mappae project is build-
ing a database of medieval and early modern maps of the worlds. Differently from
canonical DH projects, though, the authors of mappae see digitazion as only the first
step toward the “elaboration of the cognitive relations represented in them as well as
their change“ [31]. These recent developments suggest that the takeover paradigm
may be viewed as one extreme of the spectrum of possible encounters between the
Humanities and the Sciences of the Artificial (see Fig. 1). The takeover extreme is
characterized by the minimum possible interaction between the disciplines. By in-
creasing the level of reciprocal interaction, the two projects just mentioned, embed-
ded cognition and multimedial communication, move increasingly away from this
end of the spectrum. In order to get a clearer picture of the whole range of possible
encounters, confronting examples situated at the opposite end would be extremely

Fig. 1 The continuum of interdisciplinary interaction between the Humanities and the Sci-
ences of the Artificial



354 S. Franchi

helpful. In other words: only by investigating Hum/SA encounters that exhibit the
maximum possible level of interactions we could get a full picture. What would
such an encounter look like? I think we may provide an answer to this question by
looking at actual encounters between the Sciences of the Artificial and Humanities’
sister disciplines: the arts.

2 Artistic Digital Practices

The rich history of “digital art,” [40] offers many examples of artists trying to ex-
ploit the expressive possibilities of digital media, whether in the production of lit-
erary works, in music, painting, or installations. The theoretical frameworks behind
these efforts vary widely. For instance, the painting program AARON [33, 8] and
the music program ALICE [9] may be interpreted as extensions of the classic AI ap-
proach to cognition. Both programs manipulate mental representations in the artis-
tic domain. The earlier efforts by the French ALAMO group [39, 2], on the other
hand, are more consonant with the combinatorial approach to literary production
that emerged out of French Structuralism in the 1960s. These approaches could be
said to fit the takeover paradigm explored previously, in either incarnations.

In some cases, however, the encounters between artists and computational tech-
nology show the possibility of a different paradigm. This happens when making
music, painting, producing installations, and writing with a computer changes the
concepts artists work with, and, at the same time, forces computing disciplines to
change theirs as well. I will illustrate the general features of these encounters with
reference to two recent digital art projects: the “microsound” approach to musical
composition [43] and T-Garden installations [48].

2.1 The Microsound Approach to Music

Pierre Schaeffer introduced the general notion of “sonic object” (objet sonore, [45,
p. 268]) as a pure sound that we perceive as completely detached from its sources
and is appreciated in its full autonomy. A sonic object is not the “noise coming from
the street” or “the note from the cello,” but, rather, the noise or the note, as we hear
them, the pure sonic qualities that enter my consciousness independent of its mode
of production and its cultural mediations.4 Roughly at the same time, Dennis Ga-
bor [23] started to advance the theory of “acoustical quanta,” according to which

4 Schaeffer defines his approach as “acousmatic music,” thereby reviving an old term
from ancient philosophy. According to tradition, the “acousmatics” were the disciples of
Pythagoras, whose words reached the students from behind a screen. The intention was to
separate as much as possible the essential content of the spoken words from all the physical
and personal details of the speaker uttering them. In order to appreciate the pure qualita-
tive content of a sound, Schaeffer argues, we should similarly detach it from the details of
its production and enjoyment to which it is always, consciously and unconsciously, con-
nected. In contemporary terminology, we could say that Schaeffer’s “objet sonore” denotes
the pure qualia of a heard sound: the “what it is like” to hear it.
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traditional sounds, such as notes, could be decomposed into minuscule sonic par-
ticles (“quanta”) whose intrinsic properties and mode of combinations give rise to
the perceived phenomena of pitch, timbre, and so on. Musicians did not wait long to
combine the notion of pure sonic object and Gabor’s quanta. From the late 1950s on,
Pierre Schaeffer, Iannis Xenakis, Horacio Vaggione, and others began writing mu-
sical pieces as compositions of tiny “sound grains” initially obtained by sampling
natural sounds with a tape recorder and cutting and splicing tiny segments of tape
by hand. Curtis Roads recently systematized the microsound approach to musical
composition [43]. Roads expands Schaeffer’s notion of objet sonore by pointing out
that all the sonic objects traditionally used in music composition have (at least) two
common properties: their duration is within a few seconds to a few hundred of mil-
liseconds; and their associated features (timbre, pitch, and dynamics) do not change,
by and large, throughout the life of the object.5 Roads’s exploration begins by loos-
ening these two traditional constraints and positing a type of musical composition
based on “microsounds,” sonic objects whose timescale lies between that of notes
and samples and whose pitch-, timbre-, and dynamic-like properties could evolve
during the objects’ lifetimes. As the early experiments by Xenakis made clear, the
construction of a musical piece out of thousands or millions of musical “grains,” if
carried out by hand, proves to be a near-impossible tasks. This is where comput-
ing technology (and theory) enter the picture, via a tight cooperation with music
theory. The solution to the dilemma between the unprecedented flexibility that mi-
crosound composition grants the composer and the impossible burden that manually
shaping each musical grain demands requires the invention of principles of grain or-
ganization at a higher logical level, and the design of a digital tool that will create
(or synthesize) the necessary grains. The composer shapes the composition by ma-
nipulating “clouds” or “lines” of microsounds and lets the digital tool convert those
lines and clouds into the required musical material. We call “granular synthesis” this
approach to microsound composition. Roads’s original contribution is perhaps the
development of a systematic approach to granular synthesis and the development
of granular synthesis tools.6 In other words, the double challenge that composers

5 This is a simplification, as Roads acknowledges. Expert musicians routinely use all kinds
of techniques—from glissandos and slides, to circular breathing and extreme dynamics
variations—that allow them to change the objects properties. Moreover, the static charac-
ter of notes’ fundamental properties applies only to canonical Western music and not to
other non-Western musical culture or (within the Western tradition) to avant-garde jazz.
Nonetheless, his larger point stands, even though limited to the Western tradition: first,
because these techniques are usually confined to the domain of interpretation and are not
part of music composition proper; second, and perhaps more importantly, because the
variations, no matter how important to the interpretation, are minimal with respect to the
object’s properties.

6 The album collecting Curtis Roads’s own composition based on the granular synthesis
approach is significantly titled Point Line Cloud, an allusion to the composition techniques
he used as well as a nod to one of the manifestos of 20th Century modernism in the arts.
Roads’s work was mostly done through batch processing. The Canadian composer Barry
Truax, another granular synthesis pioneer, was the first to develop granular synthesis tools
for real time performance [51, 52].
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wishing to “sculpt” sounds at the micro-level face becomes a mutual collaboration
between compositional and algorithmic techniques. On the one hand, composers
need to broaden the musical grammar to allow the manipulation and aesthetic as-
sessment of previously unheard of objects [54]. On the other hand, they need com-
puter scientists and mathematicians to develop alternative analytic and synthetic
models of sound (in addition to Fourier-transforms and similar methods) capable
of capturing the features of sonic events lasting only a few milliseconds [53]. This
mode of interaction is substantially different from the takeover approach we saw
above: its most distinctive feature is the mutual, often cooperative and sometimes
antagonistic involvement of the artist and the computer scientist at each step of the
production process.

2.2 The T-Garden Approach to Agency

The T-Garden environment produced at the Topological Media Lab follows a struc-
turally similar paradigm. The basic issue Xin Wei Sha faced was an analysis of the
phenomenon of human agency. Traditionally, agency has been seen as either “free”
or “compelled” (or autonomous vs. heteronomous, in Kant’s canonical terminol-
ogy). The microsound composers devised a new object by logically weakening the
standard features of the traditional sonic object. Similarly, Sha set out to devise
a new concept of agency by logically weakening the traditional dilemma between
free and compelled actions. His working hypothesis was that we could consider
the two terms of the standard opposition as the extremes of a whole spectrum of
possible forms of agency. In other words, Sha set out to explore the space of semi-
autonomous agency. He took a particular kind of actions—physical gestures—as
proxies for agency in general, and then devised a complex installation in which real
people are allowed to move around while the environment imposes rigid, yet partial
constraints on the range of physical motion the visitors are allowed to perform. The
result is the T-Garden:

a responsive media environment, a room in which people can shape projected sound
and video as they move. Upon entering a T-Garden space, each visitor—called a
player—is asked to choose a costume from a set of garments designed to estrange the
body from its habitual movement and identity. An assistant dresses the player, strap-
ping wireless sensors on the player’s chest and arm. The player is then led into a dark
space illuminated only by video projected from 5 meters above onto the floor, a space
filled with sound already in a residual motion. The assistant tells the player only to
listen as she moves to understand what effect bodily motion has on the ambient media.
As the player moves, her gestures and movement across the floor perturb the field of
sound, modifying existing sound and introducing new patterns. The room’s own au-
tonomous processes generate a musical “cantus firmus,” and each player effectively
carries into the room another voice, but one that is semiautonomous, parameterized by
gesture and by the state of the software system. The synthesized video projected onto
the floor provides a visual topography for the player to navigate. In some instances,
objects appear projected onto the floor, but always transforming semiautonomously
according to the movements of the players. [48, p. 441]
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The T-Garden installation, like Roads’s composition, could only come into being
through the close cooperation between the artist and the computer scientists. We
could not turn “semi-autonomous” gestures and, even more importantly, the results
of people interacting through them, into a concrete field without the decisive contri-
bution of sound-analysis and sound-synthesis software, as well as all the hardware
needed for sound and video production, the algorithms required for their manipu-
lation and the autonomous evolution of the space within which people interact. In
this case as well, the artist’s interest was focused on the analysis and recreation of a
particular segment of human activity—the production of gestural signs in a cooper-
ative environment constrained by other agents’ actions and coordinated by real-time
computational processes. This goal necessitated theoretical and technical work on
two fronts. On the artistic side, it mandated the translation of a theoretical reflec-
tion upon the status of semiotic structures into a concrete installation. It required
the construction of an event that forced the participants to reassess their conception
of communication and “freedom of speech.” On the technical sides, it forced the
computer scientists to develop real-time systems capable of interpreting human ges-
tures and translating them into sonic and visual equivalents the participants could
reintegrate into their communicative actions.

These two examples of artistic production points to a pattern of cooperation be-
tween work in computational and non-computational disciplines that is quite distant
from the AI/CogSci and DH patterns discussed above. Instead of a takeover, the
artistic model produces a true encounter that changes both partners’ technical and
theoretical apparatus.

2.3 A Structured View of the Artistic Approach

Table 1 summarizes the common features of digital artistic practices. I would like
to stress their most important feature. The artists focus on a specific object (broadly
understood) that:

1. did not exist prior to the artists’ intervention and which in fact represents their
most original contribution to their field. Typically, the artists conceive these new
objects by broadening the traditional conception of an analogous previously ex-
isting object. Thus, Roads obtains microsounds by generalizing the notion of
sonic object, Sha produces “semiautonomous gestures” by carving a space be-
tween autonomous and heteronomous gestures. In the table, this is the transition
from a previously existing “focus object” (1) to the newly created one (4).

These new objects the artists invented, however, cannot gain a concrete existence
without:

2. the decisive intervention of the computing disciplines. In everyday life, we can-
not access microsounds nor semiautonomous gestures, hence the necessity of ar-
tificial tools. The crucial issue, here, is that digital technology is directly related
to the necessity to manipulate a newly conceived yet phenomenally inaccessible
object.
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Table 1 Summary view of artistic digital practices

Microsounds T-Garden
1. Focus Object Sound objects Gestural signs

2. Property Timescale Sign-constraint

3. Previous state
Notes (100/-3) vs.
Samples (10-9)

“Free” vs.
“Fully constrained”

4. New focus
object

Microsounds
(10-6)

Semi-autonomous gestures

5. Artistic
contribution

Microsound grammar Semi-free gestural sign set-ups

6. Digital
contribution

Microsound manipulation tools
Real-time gesture analysis and

translation
7. Artistic

“deliverable”
Microsounds compositions T-Garden installation

8. Digital
“deliverable”

Granular synthesis theory Real-time tools

9. Result
Novel compositional forms and

musical objects
Novel conception of bodily autonomy

10. Final
outcome

Musical piece Installation

11. “Effect” Emotional/cognitive arousal Conceptual adjustment

The combination of the two previous requirements generates all the remaining steps
in the artistic digital practices I discussed. It may be worth repeating, however, that
these steps are equally distributed between “artistic” and “digital” contributions.
The digital manipulation of new objects requires, at the same time, the invention
of new forms of conceptualizations of these objects (step 5) as well as the produc-
tion of corresponding digital artifacts (6). Moreover, once the artistic/digital loops
comes to a closure with the production of works of art (the artistic “deliverable” of
row 7), an analogous digital deliverable will be automatically produced as well (8).
The necessary duplicity of results is a direct consequence of a cooperation between
artistic and computing disciplines which, I believe, is as close as possible. This is
why artistic digital practices can provide a good illustration of the kind of interac-
tion we were looking for at the end of section 1 above. Artistic practices represent
the end of the spectrum directly opposed to the takeover modality of AI and DH.

However, the arts are not the Humanities. Can we carry over the mode of inter-
action we have seen at work in artistic digital practices to the everyday practice of a
Humanist? This is a complex question which has at least two related component:

1. Is it possible, in principle, to translate those practices? Or is there any essential
difference between artistic practices and Humanities’ practice that would pre-
clude it?
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2. Even granting that the translation is possible in principle, how would such a
highly interactive encounter between the Humanities and the sciences of the Ar-
tificial actually work?

The final section of the paper will address these two questions.

3 Cooperative-Agonistic Humanist Digital Practices?

3.1 Poiesis and Theoria

In Metaphysics, Aristotle divides all kind of cognitive activities into three kinds: “All
thought is either practical [praxis], or productive [poiesis], or theoretical [theoria]”
(E, 1025b25). Aristotle associates to each of them a mode of cognitive operation:
praxis corresponds to phronesis, or practical wisdom; poiesis corresponds to techne,
or craft; and, finally, theoria corresponds to episteme, or science. Moreover, Aristo-
tle sets up another important distinction: techne and praxis, he argues, are concerned
with contingent being (what is and could have been otherwise), while episteme is
concerned with necessary being (what is and could not be otherwise). It follows
that poiesis and praxis are essentially time-bound: both kinds of activity are about
what actually exists here and now or, if we assume a broader historical standpoint,
with what existed at a particular moment in time (and, relatedly, in space). Poiesis is
always producing a particular work of “art” that comes into being at a specific mo-
ment in time, and in a specific place, and which may go out of existence at another
specific time and place. The same happens, and even more so, to praxis—a term
which, roughly speaking, Aristotle applies to the coordinated activities that human
beings carry out in social settings and which includes all political action (see Eth.
Nic., bk. VI). Theoria, on the other hand has an essential connection with timeless-
ness. Even though the human beings who devote a substantial amount of their lives
to it are obviously mortal and therefore thoroughly immerse of the flow of time,
the objects they discover during contemplation—in other words: the result of their
science (episteme)—are out of time, therefore ensuring a higher and more durable
enjoyment and a superior form of life (Eth. Nic, X, 6-9).

The distinction between praxis and theoria is important for a correct charac-
terization of digital practices. The procedure I sketched in table 1 above applies
only to poietic activities: it describes the process of production of (aesthetically
valuable) artifacts out of the composition and organization of more elementary “ob-
jects” (sounds, gestures, and so on). Moreover, the transition from traditional to
digital artistic practices is fully dependent on poiesis: computer science and digi-
tal technology enter into a dialogue with artistic practices because they allow the
manipulation and organization of objects that would be otherwise impossible or at
least eminently impractical for the artist to deal with. The provisional conclusion
we can reach from this brief excursion into the mode of being of artistic objects is
that the cooperative-agonistic mode of interaction with the Sciences of the Artificial
relies upon the poietic character of the cognitive activities it enters into a dialogue
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with. Poiesis is a necessary (although certainly not sufficient) condition for digital
practices of the kind sketched above.

Which of the three Aristotelian categories applies to the everyday practice of the
Humanist? A well-entrenched distinction sees Humanities disciplines as essentially
reflective, since they are involved in the interpretation of human-produced cultural
objects [13]. Humanist cognitive activities would then fall squarely within the do-
main of theoria and be therefore aligned with scientific activity, even though their
distinctive methods may be different. This distinction captures to a certain extent
some of the differences that emerge in the everyday practice of artists and human-
ists. But we wold be mistaken if we were to take it too seriously and turn it into
a rigid ontological and epistemological criterion. Consider philosophy, perhaps the
most theoretically inclined discipline among the Humanities. Even leaving aside the
thorny issue of the relationship between philosophy and history that has become a
centerpiece of philosophical debate since Hegel’s time [18], it is obvious that at
least some aspects of philosophical activity as well as some of its results are as
time-bound and contingent as the typical result of the artist’s toil. When looking
back at the history of philosophy, for instance, we may consider some philosophical
works as an “expression of their times.” In other words, we consider them as the
time-bound result of an act of poiesis. Sometimes, we even consider philosophical
works as a mere expression of their time, thereby fully reducing their content to their
productive act. Even though these consideration are merely skirting a very complex
set of issues, I think they suggest that we cannot reduce even philosophy—and, by
extension, the other Humanities—to pure theoria. At the very least, they include
poietic as well as theoretic elements in their constitutive practices.

The same can be said of art. The reduction of artistic activity to pure poiesis
would deprive the work of art of all the qualities that we usually assign to it. To
see this, we do not have to embrace the position that sees works of art as always
transcending their creation time and become world-disclosing truth events [26]. It is
sufficient to recognize that artistic activity would not have any value at all if it did
not contain, more or less implicitly, some reference to a not necessarily time-bound
theoretic element. In fact, only of completely failed artworks we can say they are
just the result of a productive (and wasted) act.

I am aware that these sparse considerations merely skirt a very complex issue
about the relationship between art, history, and time that has been explicitly ad-
dressed by artists, especially since the beginning of the 20th century. My goal is
more modest: I just mean to point out that an outright alignment of the arts and the
Humanities with the categories of poiesis and theoria is unlikely to be successful.
Structurally speaking, the arts and the Humanities are similar at least in this respect:
in complex and most likely different ways, the arts and the Humanities refer to and
make us of both poiesis and theoria. Since the artistic digital practices described
above require the presence of a poietic component and the Humanities contain such
an element, no principled objection stands in the way of an analogous set of Hu-
manistic digital practices.
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3.2 Toward Philosophical Digital Practices and Concept-Bound
Poiesis

What would such a practice look like? The question does not lend itself to quick
arguments. In fact, the only satisfactory answer would consist in an actual example
of it. Nonetheless, I will advance some considerations, admittedly of a rather spec-
ulative nature, that may perhaps lend some plausibility to the approach I have been
describing.

Let me go back, one last time, to the summary of artistic practices summarized
in table 1. The basic point of the process is easy to state: the practice starts with
the artist identifying a new object whose manipulation requires both the techni-
cal and conceptual intervention of the digital disciplines and the deployment of a
novel grammar for those new objects. Since it assumes manipulable “objects” as
its starting point, it may seem difficult to translate this schema into the practice of
the Humanists. Yet, a quick look at the T-Garden installation project shows that this
worry is unwarranted. The fundamental object that Sha’s project manipulates is ac-
tually a concept: namely, (semi-)autonomous gestures. This concept has a physical
counterpart which—thanks to the tangible effects it produces within the digitally
augmented environment of the T-Garden—proves crucial its actual manipulation.
From a third-person point of view, (semi-)autonomous gestures can be considered
actual spatio-temporal events that can be tracked and reacted to. However, we are
interested in the first-person point of view of the artist, since our goal is to provide
a description of her practice, rather than its materials or its results. From the artist’s
standpoint, then, (semi-)autonomous gestures are essentially concepts: they stand
for a particular way in which we can conceive and frame actual physical gestures
(and, by proxy, actions in general). In short: we may understand the “object” that
the digital artist works with as the physical or conceptual material her poiesis acts
upon. While artists have the freedom to choose objects from the physical or from
the conceptual spheres, Humanists are more limited: the materials of their everyday
practices are always conceptual. Therefore, the Humanist equivalent of the artis-
tic digital practice would be a concept-bound poiesis. We may therefore describe a
rough work plan for such practices as follow:

Identify a new object (concept) whose articulation requires the construction of
a new grammar that depends on the elaboration of digital manipulation tools re-
quiring the presence of a physical or an encodable component in the concept being
worked with and resulting in the production of a theory about that concept.

The thesis about concept-bound poiesis I advanced in this paper does not pretend
to exhaust the theoretical options we have at our disposal when reflecting upon the
computational turn. Other views may legitimately claim to be seeking the same
goal. I think, however, that artistic practices such as “digital art” can also serve as
an inspiration to all the Humanities disciplines as they proceed on their path towards
new mode of digital encounters.
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Being-in-the-AmI: Pervasive Computing  
from Phenomenological Perspective 

Gagan Deep Kaur1 

Abstract. The paper seeks to explore the theoretical foundations as well as lived 
experience of the users in ambient intelligence. The paper traces the journey of 
AmI from a ready-to-hand technology to background condition and makes 
observations regarding its key features viz. physical disappearance and 
anticipatory responding on the way and shows how this has implications for user 
as well as environment in the end. AmI is aimed to achieve its transparency by 
physically disappearing into the environment. In this context, it is argued that it is 
rather its ability to pervade into those forms of behavior whereby the user accesses 
her world, i.e. through body and presence, rather than its infrastructural 
invisibility. The former rather blocks user’s hermeneutic access to it and thereby 
pushes her to the periphery of her techno-environment. The proper way should be 
thus allowing AmI to gradually seep into concernful activities of user via learning 
its present-at-hand features, concealed effectively at present.  

The paper is an attempt to understand the theoretical foundations as well as the 
users’ lived experience in AmI. Because of Heidegger’s insistence on 1) being-in-
the-world as the starting point for any discourse about human beings, and 2) the 
analysis of Dasein’s everyday dealings with the world constituting of its tools, that 
‘equipmental whole’ which makes up the world of Dasein [1], his insights are 
helpful towards this end. The motivation behind pervasive computing comes from 
Mark Weiser’s vision of computing technology [2] which is a curious mix of 
Platonic virtue ethics and Heidegger’s views about technology. For Plato, a thing 
achieves its potential when it becomes that for which it is best suited [3]. 
Computational Technology for Weiser is no exception whose potential lies in 
becoming as transparent in use as language or electricity. The cognitive 
disappearance is its virtue which it can realize by integrating ‘seamlessly into the 
world’ by receding from the foreground of attention to the background of 
existential activities of the user [1:78]. Physical disappearance of the computer is a 
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step towards that. Cognitive disappearance has the benefit that it enables the user 
to focus on her tasks, rather than the tool itself. So, Weiser suggested that the real 
benefit of the computation technology can be gleaned only when it does not come 
in the way of activity. Heidegger called such tools “ready-to-hand”.  

However, whether this method of achieving transparency actually yields 
dividends need analysis. If not, how might pervasive computing be possible given 
its motivation as well as partial success? In this context, it is argued that instead of 
physical disappearance, it is the AmI’s capacity to pervade into the forms of user’s 
behavior that it achieves its transparency. Physical disappearance, rather, makes it 
ambiguous to understand by the user. Transparency and ambiguity are mutually 
exclusive. Latter can’t lead to the former, i.e. an ambiguous tool can’t be 
unobtrusive. Exactly how this comes about can be seen by first analyzing the 
motivations of pervasive computing itself.  

Technology, by nature, is mediational in character. As a mediator in human-
world relationship, post-modern technology has replaced traditional forms of 
mediation. Mobile phones, for example, have almost become the way of 
communicating, replacing traditional modes like writing letters for instance; 
cyber-worlds, are fast becoming the way of being present, replacing traditional 
modes like in-person presence. However, the obsolete modes can still be availed if 
one so wishes making technological mediation only secondary in nature. 
Pervasive computing is about making this relationship primordial. It means 
relating to the world through this technology exclusively and primarily 
obliterating other forms of secondary mediation. This it does by becoming the 
background of existential activities of Dasein, rather than being merely a tool 
which can invoke non-technological modes at will. Its cognitive disappearance 
from the user’s gaze is instrumental in achieving this goal. The idea of cognitive 
disappearance comes into the picture because of the drawback of mediational 
technology which at times makes the user concern more with itself rather than the 
activity at hand. Heidegger referred to this tendency of the tool as obstinacy which 
is a mode of revealing the tooled character of the tool. Here the tool obstinately 
keeps on calling our attention such that we have to deal with the tool first before 
dealing with our task. It ‘stands in the way’ of our performing the task and is 
‘disturbing’ to us. Since we can’t use it, it is un-ready-to-hand. Heidegger 
remarks, “Anything which is un-ready-to-hand in this way is disturbing to us, and 
enables us to see the obstinacy of that with which we must concern ourselves in 
the first instance before we do anything else. With this obstinacy, the presence-at-
hand of the ready-to-hand makes itself known in a new way as the Being of that 
which still lies before us and calls for our attending to it.” [1: 103-104] 

Weiser seems to have this mode in mind which he wishes to revoke into 
complete readiness-to-hand by quietly eliminating the computational technology 
from the gaze of the user by concealing it into objects of everyday use like 
furniture, buildings, and even clothing so as to enable it recede into the 
background of user’s attention. An example would illustrate this position. To do a 
drawing in Paint Brush requires the user fulfill a lot of conditions like switching 
on the computer, locating the program Paint Brush, opening the file, and then 
doing the drawing, invoking and using various commands in the process, saving 
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the file for future use and so on [4]. In contrast, drawing on a physical sketch pad 
does not pose any such demand. You just pick up the pad and start drawing. 
Weiserian vision is what if this simple sketch-pad has computing technology 
embedded in it such that the moment you draw something in your sketch pad, it is 
stored like a file which can be retrieved later on like any other file! The tiny chip 
in the sketch pad can further convey related information to other gadgets. As your 
physical color-tube runs out of color, the chip makes note of that and append the 
item to the groceries to be purchased or even notify the store on its own! As user, 
you don’t have to pay attention to all these peripheral nitty-gritty and you are free 
to concentrate only on the task at hand, which is drawing and not the tool with 
which to draw. At the end of the day, it is surrounding environment on its own that 
is taking care of user’s needs instead of user herself who is free to go about her 
tasks. This equipmental whole of interconnected devices makes the environment 
smart. Pervasive Computing is thus about extracting the computing technology 
out of the thing we call computer and embed it in various objects of everyday use, 
such that 

- our coffee machine knows what kind of coffee we like and makes 
that whenever we need it [2] 

- rooms adopt your personality - temperature, lighting and even music 
of the room adjusts to your preferences as you enter [5] 

- the fridge detects the absence of milk and messages you to buy a 
carton as you pass by the grocery store [6] 

- Paints clean dust off the wall on their own and notifies you of 
intruders [7] and so on.  

In this smart environment, nowhere user is required to give her preferences 
explicitly to the chip. The user modeling modules of these processors quietly 
make and keep updating the user preferences extracted during their interaction 
with the user. The linguistic-imperative nature of user-computer interaction is 
inverted thereby. User’s mere presence is a command in itself and therefore no 
more needs to explicitly state her commands. This disappearance of explicit 
commanding withdraws the technology from the gaze of the user to the 
background of her activities. The lights that turn on/off by your mere 
presence/absence work outside the periphery of your attention and thereby become 
background of your activities like language does.  

On the basis of this seamless transmission among various invisible chips 
embedded in the environment it is assumed that the cognitive withdrawal of the 
technology will come about. However, apart from scattered experiments, 
challenges still remain for it to materialize.  Fully intelligent ambience requires 
not just individual gadgets disappearing into the background, but their entire 
network or the equipmental-whole of dasein’s working. Whole is not mere sum of 
different gadgets put together, a whole has a character of its own. This entire 
equipmental whole needs to be transparent in user’s dealings, not scattered 
components. Merely physically disappearing does not seem to be a viable option 
as it is not the way even for an individual tool. In this context, it is of worth 
examining how an individual tool itself achieves its readiness-to-hand in the 
concernful dealings of Dasein.  
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For withdrawal to occur, tool needs to be in user’s gaze before it is learnt – 
physically, cognitively both. Its tooled character (what Heidegger called its 
present-at-hand features) must thoroughly be there before the user’s gaze. The 
hammer becomes transparent in my activity only after I have learnt hammering. 
Earlier it was merely an object – with all its attributes, its peculiar weight, its 
shape etc. I learnt how to adjust its peculiar characteristics to make it work for me. 
This presence-at-hand it regains in other modes of revealing like obtrusiveness 
and conspicuousness or what Winograd and Flores [8] called breakdown, i.e. 
when it is damaged and its readiness-to-hand therefore lost, I realize all its 
peculiar characteristics once again.  

     Present-at-hand        →  Ready-to-hand     →  Present-at-hand 
    (tool before learning)       (tool-in-use)           (tool-in-breakdown) 
 

AmI, however, effectively prohibit its components display this characteristic 
which makes it ready-to-hand from the start. But this readiness-to-hand is not 
emergent phenomena in user-artifact interaction, but a kind of forced from 
outside. Its implication is that it becomes ambiguous to the user who did not have 
opportunity to learn its present-at-hand features.  The user is thrown into the smart 
world without the hermeneutic access to its functioning which may prove 
beneficial in case it loses its readiness-to-hand by turning conspicuous. Instead 
tool should quietly seep into user’s activities. Even the ‘profound technology’ like 
electricity too, running in the background, is no exception. Even if all its access 
points are effectively concealed, little interaction with it show how the user’s 
relating to it in certain conditions would be interpreted by it (her touching a live 
wire may cause electrocution).  

This hermeneutic access to the mechanism has the benefit that it makes the 
user-artifact relationship stable. For something to be a background, it need be 
stable and interpretable in user’s experience of it even though, most of the time 
she does not initiate any rhetoric about it. A background which is un-interpretable 
in user’s everyday dealings is unlikely to provide that. AmI, instead of providing 
this hermeneutic access, let its artifacts disclose only their selective modes. Their 
one or the other aspect always remains hidden. Consequently, a coffee machine, 
with a computer inside it, is revealed, in the user’s dealings with it, as a coffee 
machine only and not as an information extractor. A significant element of AmI 
equipmental whole is information extraction which imparts it interconnectivity. 
By blocking access to this feature, the mode whereby the artifact should disclose 
to the user is left to the rationale of manufacturer – a ready-to-hand coffee 
machine, but not a component of that equipmental whole which is called smart 
environment. Thus, if that whole turns conspicuous, the user is baffled! The 
assumption that by disclosing only one mode, that is former (as coffee-machine), 
and concealing the latter (as information extractor), the technology would be 
pushed behind the curtains, behind the cognitive gaze of the user is hence 
problematic. Rather than making it transparent, it makes it ambiguous. 
Environment is here made to conceal a favored mode which could have 
implications for environment as well as user’s status in it. Courtesy this bias, the 
changes in interactive modes among human-artifact relationship can disclose the 
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way whereby pervasive computing journeys from ready-to-hand to background. 
The contemporary mode in human-artifact relationship is via language. AmI, to 
achieve full transparency needs to have robust anticipatory and personalizing 
abilities so that without even user’s knowing, it can extract information about it, 
anticipate and adapt to her needs. For this it, needs replacing this linguistic mode 
by pervading into those forms of behavior whereby user accesses her world. 
Before language comes into picture, human beings are already there in the world 
relating to it via mere presence, body gestures, facial expressions etc. AmI is about 
penetrating into these modes of access. The technology here approaches/responds 
to user through face recognition, body gestures, spoken commands and even by 
mere presence!  

The theoretical standpoint of AmI is thus of a penetrating technology. It is this 
ability to penetrate rather that makes pervasive computing possible – as a truly 
pervasive technology and not just its physical embedding in the objects of 
everyday use. By pervading into these forms of behavior, it conceals itself as a 
background condition of the existential activities of Dasein – a background that 
anticipates and responds, which is taken-for-granted and not questioned. It is not 
thus just ready-to-hand, but what Nordmann calls noumenal technology in the 
context of nanotechnology [9] – a technology quietly working on its own without 
affording the user the hermeneutic access to it. Functioning like a spider’s web in 
the corner, at the periphery of our attention, it is unobtrusive in most of our 
circumspective dealings with the world. This unobtrusiveness, which leaves 
Dasein to focus on its activities, is traded off, however, with the privilege of 
questioning it, or providing it an opportunity to make it work for it by calmly 
adapting to its needs.  

To-be there in the AmI is thus a command in itself. The room adjusting its 
temperature as the user enters in is the case in point. This is however only a 
nominal convenience for with this the possibilities open to user get decided by the 
artifact rather than user herself. To-be, for Heidegger, is to be open to possibilities 
– of action and interpretation. This is the hallmark of Dasein’s authenticity. 
Gelven finds it the very structure of the word Dasein – “Here I am, open to 
possibilities!”[10: 27]. Curtailing Dasein’s decision-making possibilities, AmI 
projects possibilities in the inauthentic mode where Dasein as agent does not play 
any central role. The possibilities opened up to Dasein refer the actions which do 
not reflect Dasein’s awareness about its own activity as action, but which occurs 
as a part of any other activity going on around it. The Present, one of the three 
ekstases of temporality, for Heidegger is significant only in terms of the moment 
of vision i.e. one is directly aware of what one is doing in any given moment as 
one’s own initiated action. In AmI the possibilities are only about the objects of 
Dasein’s dealings (doors opening on its approaching), but not its own decision and 
resoluteness in the matter. This makes Dasein as decision-maker in its 
circumspective dealings left out of the loop, as many writers have worried [4, 11]. 
Michelfelder calls this tendency of surrogate decision making a threat to user’s 
“existential autonomy” [12].  
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With these are crucially inverted the notion of environment noted above. These 
anticipatory and personalizing abilities reveal environment as standing-reserve of 
information. Heidegger saw technology serving as a “challenging forth”, making 
environment reveal itself as a standing reserve of the demands put by the Dasein 
as, for example, river reveal itself as resource-house of electricity etc [13]. AmI 
goes a step ahead and makes it reveal itself as a standing reserve of information 
which is more abstract than energy in the sense while hermeneutic process starts 
from Dasein to the river in case of energy, in smart environment, it starts from 
artifact to user without even the user knowing it. When interconnected, it evolves 
into unobtrusive information transmission channels and thus make the most 
mundane of everyday objects reveal themselves as the facilitators of Dasein’s 
transactions with the world – cloths are no more just an item to cover the body, 
but an equipment of sensing the bodily temperature and transmitting that 
information over to other devices like detecting temperature change in the sick 
elderly and alerting their caregivers [14]. As Hubble Telescope is called Eye on 
the Universe, AmI reveals most mundane objects as eye on the everydayness of 
Dasein. The spontaneity with which environment is made to yield is particularly 
telling in this respect. Non-computational technology as in the above instance had 
a character of “setting upon”, putting demands to the environment, but AmI’s 
spontaneity makes environment yield without demand. As an existential setting, 
environment exists as a demanding backdrop that not only makes being of Dasein 
possible, but also challenges its wits and guts to be understood and tampered with.  
The environment that yields spontaneously to our needs and preferences ceases to 
be a challenging backdrop therefore posing the need to be understood. It is 
naturalized and familiarized, losing its potentiality to surprise. By surprise is 
meant the way the thing approaches us in novel, non-thematic ways. It may be of 
interest to see therefore how novelties may arise in AmI. A man sees an apple 
falling and comes up with the theory of gravity. Not anymore. AmI is an attempt 
to make every occurrence thematized – anticipated well before. The responses to it 
are already underway even before the user starts making sense of it. Neither 
anything can bump into us, nor can we bump into them. It is a matter of 
convenience only that you see a book’s mention in newspaper and mere encircling 
it with your pen initiates a host of other actions like ordering that particular book 
to the bookstore and before you enter the store it has already been packed for 
billing. However, when issue is about novelty, it is a common experience that 
unguided behavior plays a significant role in experiencing novelties. Not even a 
search engine or Amazon can make you stumble upon Joyce while you had 
ordered (or searched) Keats, save physical browsing the book-shelf (J & K being 
physically adjacent). While Amazon may still give you Suggested Readings list, 
but could that be possible in AmI? How novelties could arise in AmI or what 
means be left to the user to create novel experience for her may need urgent 
attention; more so when her everyday experiences is going to be 
reduced/transformed to specific forms of behavior. What if procuring books etc 
the way in above scenario is made the mode of access effectively replacing 
traditional, physical forms of access? Even if a suggested reading list is sent along 
with, it is decided by a tiny chip that has kept record of all your previous orders, 
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but need user stick always to a particular genre, for instance, of which List would 
arrive? In the end, the kind of experience user is going to have (physical browsing 
or receiving made-up list and procuring the books that way) is not decided by her, 
but the hidden others!! By receding into the background, AmI becomes a 
transformer of our experiences in subtle ways.  

So what does it mean to be in AmI then? To-be-in-AmI is to live in an 
environment whose nature is entirely paradoxical – on the one hand, it is ultra-
sensitive and actively responsive to our needs, and on the other, it is made to yield 
itself so spontaneously that it has almost lost its dynamism. Being-in-the-AmI is to 
live among consistently watching techno-others populated by this environment. 
Mitsein, or Dasein-with-others, was considered by Heidegger as one of the core 
existentials of Dasein. AmI has rather Dasein-with-techno-other who has almost 
lost its alterity in virtue of its having been receded into the background. But, it is 
still there – quietly breathing behind the scenes, interpreting and responding to 
Dasein’s concerns. Since this relationship is primordial, Dasein does not have the 
option of not-being-with this techno-other. For Heidegger, Dasein is forever faced 
with the existential dilemma of choosing – either to be authentically by listening 
to the call of conscience or fall into the they-self and hence lead inauthentic 
existence. To be authentically is to be aware of the possibilities open to Dasein. 
This possibility of choosing is reserved for the artifact in AmI rather than the user. 
The surrounding they-self of Dasein is not a meaningless “chatter”, but a 
consistent “watcher” – a techno-watcher who adapts and quietly makes user 
adapts to it by transforming its experience in subtle ways. It makes user, what 
Thackara rightly calls, “a frog” put in pan of cold water being heated steadily to 
boiling point without ever realizing that it is getting cooked by and by because it 
never realizes the change in temperature [15].  

To-be-in-AmI is, thus, to be more with the artifact than the people around 
contrary to what is assumed by Weiser. By the sheer ubiquity of the computing 
mechanisms embedded in everyday use, even if invisible to the eye, Dasein is 
more with artifact which keeps on humming about her. In a pure technical sense 
therefore Hybs remarks that, ‘computer technology, because of its fundamental 
design, is probably incapable of withdrawing’ in the Heideggerian sense [16: 222].  

To-be-in-AmI is, consequently, to live at the periphery of these networked 
surroundings. More than technology existing at the periphery of our attention [17], 
it is user as a decision-maker who exists at the periphery of her techno-
environment. Calm and unprompted adaptability of the technology is traded off 
with the displacement of user from center to periphery. You approach the door and 
it opens having scanned your face and judged you to be the right person, even 
though your intention might be just peeping through the transparent door to see 
who is sitting in the hall and going back from there. The door has opened 
nonetheless! 

To-be-in-AmI is to impose agency to mere presence. In certain situations, your 
presence can be interpreted as series of actions action intended by you. The user is 
thrown into the situation of her everyday dealings in this smart world. Her objects 
of everyday use, viz. machines that brew coffee without prompting, are part of the 
background of readiness-to-hand that is taken for granted. Her mere presence in 
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certain situations is deemed as “concernful acting”, viz. like being present in a 
shopping mall is identified as her identity of being a buyer and all the actions 
associated with a buyer are attributed to her and responded to those attributions 
appropriately, as for example, packing of the groceries as she enters the Mall by 
the management. The user has not initiated any explicit action of locating desired 
items on the shelves, putting them in cart, placing them on counter for billing etc. 
To-be there just is enough.  

Summary  

As the user is pushed to the periphery of techno-environment as a decision-maker, 
the AmI’s being a background of Dasein, needs analysis. This feat it achieves by 
pervading into those forms of behavior whereby the user accesses her world, i.e. 
through body and presence, rather than through its infrastructural invisibility. The 
penetration so achieved makes the user’s lived experience radical. However, it 
would have been better if AmI afforded the possibility of revealing its tooled 
character by disclosing those selective modes whereby it achieves its smartness, 
i.e. the information extraction modes so that it could be interpreted by the user and 
handled in the case of its inconspicuousness. This could restore the user’s position 
once again in the centre of this technology.  
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The Influence of Engineering Theory
and Practice on Philosophy of AI

Viola Schiaffonati and Mario Verdicchio

Abstract. Ever since the early days of Artificial Intelligence (AI), the complexity
of its relationship with philosophy has been under observation. Some devoted their
efforts to a systematic foundation of philosophy of AI, taking for granted its place-
ment within philosophy of science. Such endeavors were based on the view of AI
as a scientific discipline, primarily aimed at answering questions about the nature of
intelligence. Thus, it was natural to consider philosophy of AI, like philosophy of
physics and of biology, as part of philosophy of science. We believe, however, that
this position must be reconsidered today in the light of the issues recently tackled
by AI and of the emergence of new fields of analysis: philosophy of technology and
philosophy and engineering. In this paper we analyze how the view of AI as en-
gineering influences philosophy of AI. Moreover, we argue that philosophy of AI,
under this influence, can contribute to the foundation of the emerging philosophy of
engineering.

1 Introduction

This work is aimed at exploring the relations between Artificial Intelligence (AI),
philosophy, and engineering. The peculiarity of the relationship between philosophy
and AI has been evidenced since the advent of AI [2], [23], [15] and many efforts
have been devoted to a systematic foundation of philosophy of AI [4], [7]. We rely
on a framework [21] that takes into account both the influence of philosophy on AI
and the influence of AI on philosophy. We argue, however, that this framework must
be revised today in the light of the emergence of new fields, such as philosophy
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of technology and philosophy and engineering. As one can guess by their names
the former has already been recognized as an autonomous field, whereas the latter
is still under discussion. Departing from the traditional view of philosophy of AI
as part of philosophy of science, in this paper we analyze how the view of AI as
engineering influences philosophy of AI. Moreover, we argue that philosophy of AI,
under this influence, can contribute to the foundation of the emerging philosophy of
engineering [1], [24].

In our effort, we take software-agent-based simulation as an example of what lies
in a methodological area of overlap between what is traditionally carried out in the
sciences (observation) and what most typically characterizes the activity of engi-
neering (construction). Epstein and Axtell consider the former only as a necessary
step for the completion of the latter, and wonder whether this alleged primary role of
the construction of a model may indeed become a paradigm shift in some research
fields: “[Agent-based modeling] may change the way we think about explanation in
social sciences. What constitutes an explanation of an observed social phenomenon?
Perhaps one day people will interpret the question ‘Can you explain it?’ as asking
‘Can you grow it?’ [8].” We think that this shift in interpretation reflects only a part
of what happens when scientific and engineering practices meet in the context of
AI: many research endeavors show that the relation between observation and con-
struction is not that straightforward, and that software agents may be built not only
to simulate phenomena already observed in the field, but also to explore new inter-
action patterns that have not occurred yet in the real world. Intelligent agents were
indeed first introduced to replace humans in controlled environments, but it became
soon clear that they can be exploited in environments with less constraints, as a
simulation test-bed to verify what could happen should some possible strategies be
implemented in the real world. What has been built as a tool from an engineering
perspective can be taken and put into new configurations under different conditions,
to observe previously unexplored scenarios, and formulate new relevant hypotheses.

These circumstances call for a methodological rethinking. More specifically, the
traditional relation between the scientific perspective that supports the formulation
of hypotheses and the engineering methodologies employed to construct the rele-
vant verification instruments must be enriched to take more factors into account.
In particular, the object of the researchers’ observation is not only the real world
any more, but an artificial environment which models selected aspects of nature and
society, and in which the interactions are influenced by how such environment has
been implemented by the researchers themselves.

This paper is organized as follows: Section 2 sets the domain of our discourse by
illustrating the disciplines involved and the relevant relationships; Section 3 elab-
orates on an example of agent-based modeling; Section 4 illustrates how such ex-
ample sheds light on the impact of the engineering aspects of AI on philosophy;
Section 5 elaborates further such considerations and shows how they can guide us
in the first steps toward the definition of a philosophy of engineering; finally, Section
6 concludes.
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2 AI, Science, and Engineering

This section is focused on determining the position of AI with respect to science
and engineering. We part from the traditional view that considers AI as a branch of
science studying human intelligence in order to reproduce it, and we take also its
engineering aspects into account.

When applied to a discipline, the term ‘scientific’ can be intended as related
either to its object of study, that is, whether the discipline focuses on the observation
and explanation of a natural phenomenon, or to its method, that is, whether such
analysis is conducted in accordance with the traditional principles of experimental
disciplines.

In considering the case of AI, we can say that the object of study played a pre-
dominant role in defining the scientific character of the discipline, at least at the
very beginning, when the main goal was indeed to understand human mind and
intelligence. On the other hand, a much less rigorous methodology, quite far from
any scientific experimental code of conduct and closer to an engineering approach,
characterized the construction of intelligent artifacts. It has only been since the mid
1980’s that more rigorous experimental procedures have been accepted in AI [20]
and results have started to be tested by means of statistical analysis [5].

Methodological conducts aside, until few years ago, the view of AI as science has
played a prominent role. This was probably due to a number of reasons, including
the attitude of its founding fathers, interested in realizing an intelligence machine,
but convinced that to understand human intelligence was the first necessary step
to achieve their goal. This is already evident in the programmatic proposal written
by John McCarthy in the winter of 1955 in preparation of the Darmouth confer-
ence, where the goal is “to proceed on the basis of the conjecture that every aspect
of learning or any other feature of intelligence can in principle be so precisely de-
scribed that a machine can be made to simulate it” [16]. This attitude was further
emphasized by the so called cognitive modeling approach headed by Herbert Simon
and Alan Newell starting from the first days of AI. According to this view, AI aims
at realizing machines able to think in the same way human beings do, so it is fun-
damental to determine how human cognitive processes work. The famous General
Problem Solver (GPS), one of the first programs in AI, developed by Newell and
Simon [17], reflects exactly this view: it is a program to solve general problems
by simulating the ways human beings adopt to solve the same problems. Despite a
long lasting effort in solving engineering problems that has characterized AI since
its birth, the predominance of the scientific view is also due to the fact that AI has
its roots in several scientific disciplines, such as mathematics, logic, and economics
that undoubtedly have played a role in assessing its character.

We agree, however, with Nils Nilsson [18] to depart from the purely scientific
view of AI, and consider that this discipline can also be seen as engineering. Ac-
cording to his perspective, AI is both a science for the general study of intelligence,
and an engineering discipline, devoted to the design of concrete intelligent systems.

All the more, to depart from the purely scientific view of AI seems more in ac-
cordance with the growing attention that the engineering view has received in the
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last few years, such that it can be seen as predominant under some respects. As it is
evident in the first chapter of the most used textbook in AI [20], AI is defined as the
discipline devoted to the design and realization of systems that act rationally. Here
‘to act rationally’ is presented in opposition to ‘to act as human beings’, and ratio-
nality is seen as an ideal notion of intelligence without errors. Moreover, the general
perspective of the whole book is that of the rational agent and of the components
that can be developed to realize it. After some disillusions, both at the beginning of
the history of AI and more recently, purely scientific AI is perceived as too ambi-
tious and the engineering perspective seems to offer more concrete and attainable
tasks to concentrate on.

To discuss more concretely the influence of AI on philosophy, in the next section
we present an example of the engineering attitude of current AI more focussed on
performance and on specific problems. By using this example, in the rest of the pa-
per we will focus on the impact on the philosophy of AI, when the engineering view
of AI is predominant, and on the contribution this view can offer to the foundations
of the emerging philosophy of engineering.

3 AI Artifacts and Models: Electronic Auctions and Markets

Software agents represent one of the most active subfields of AI in recent years:
researchers try to model and reproduce several important aspects of human nature,
such as agency, learning, and reasoning in autonomous decision-making entities that
run on a computer in the form of a program. Autonomy in this context is to be meant
in a weak sense: the software an agent is comprised of is complex enough to include
instructions for the assessment of the situation the agent is in, and to execute the
appropriate relevant action from a set of available options in accordance with the
rules established at the time of the design of the agent itself. Rather than a specific
technology, agents should be seen as a programming paradigm, which prescribes
researchers in the task of building a model of a system to describe it from the point
of view of the entities it is comprised of.

Agent-based modeling is oftentimes presented as an alternative to differential
equations to deal with emergent phenomena, resulting from the interaction between
the individuals in a system. These two modeling paradigms are useful in different, if
not opposite, situations. When all the factors determining the dynamics of a system
are clear and mathematically definable both globally and locally with respect to
all its components, no other approach can best the exact results of an analytical
model provided by differential equations. On the other hand, when the individual
behavior of the system’s components is not linear, or it depends on if-then rules
and, thus, it presents discontinuities, agent-base modeling can be helpful in allowing
the researcher to focus only on what can be defined in terms of behavior of the
single agents, without the need to include the effects of their actions onto the system,
which can be let spontaneously emerge from the simulation that includes the above-
mentioned individual models.
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We illustrate in detail the case of electronic auctions and markets with software
agents, showing that not only artifacts mimicking the participants are needed, but
also models of the auction environment and all its rules must be created. Researchers
must heavily rely on simulations to check whether agents are able to interact within
the designed environment, whether the results of such interaction are indeed useful
for the participants, and whether the interactions resemble what happens in the real
world. We stress the primary role of model-based verification and reasoning in these
AI endeavors.

3.1 Agents for Electronic Auctions

Let us first focus on a specific case of agent-based modeling: the design and imple-
mentation of a software agent for electronic auctions.

First of all, a designer needs to know the interface with which the online auc-
tion house gets in touch with the bidding agents, that is, the set of concepts that
are employed by the auctioneer to run an auction and the relevant vocabulary, or
set of message formats, which all participants must have in common for meaning-
ful communication to take place. Secondly, the set of rules regulating the auctions
must be embedded in the agent, that is, a program must be written that produces
only sequences of messages that constitute correct responses of the agent during a
session of an auction. There are different types of auction (e.g. English, Dutch, etc.)
regulated by different sets of rules. Depending on the flexibility that the designer
wants to give the agent, several of these sets must be programmed into it, and it
must be made sure that the communication language between agents and auction
houses includes terms to refer to these different rules, so that an agreement on how
to proceed can be reached before an auction is started.

When it comes to shared information, there is an interesting trade-off between
the auctioneer’s interests and the bidding agents’. As stated before, there is a min-
imum quantity of information that needs to be shared for the auction to even take
place, but the disclosure of any further information is not only optional, but it may
also be undesirable. In a first-price sealed-bid auction, for instance, bidders submit
one bid concealed from others. Once collected, the bids are disclosed and compared,
and the agent with the highest bid purchases the offered item at the submitted price.
Bidders must submit their bids on the basis of supposed market value and their own
willingness to pay. There are several pieces of information that all participants pre-
fer to keep secret: the auctioneer’s desire is to conceal the real market value of the
offered item, so that the bidders are compelled to make an estimation and, possibly,
make an overestimation, for the benefit of the auctioneer; on the other hand, every
bidding agent would enormously benefit also from knowing the other agents’ will-
ingness to pay, so that it can make a bid which is exactly the minimum price needed
to obtain the item in that auction, compatibly with their own financial availability
and the actual market value of the item. As most of this information is concealed,
bidding agents are supposed to be endowed with core reasoning capabilities: they
must be able to infer auction parameters, to estimate the current auction state, to
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predict the future auction state; in other words, the bidding agents must be able to
elaborate appropriate bidding strategies, evaluating the value of an item when it is
not certain, and taking decisions on when to place a bid.

Although deemed as autonomous, the bidding agents are pieces of software run-
ning on deterministic machines, so that they can aptly respond only to situations
which have been foreseen by their designers and appropriately coded into their pro-
grams. A degree of autonomy can be established depending on how many actions
are automatically performed by a bidding agent in an auction, as opposed to actions
for which the agent asks for its owner’s permission: an agent that runs a bidding
session from beginning to end without involving the human it represents can be de-
fined as completely autonomous, whereas an agent that calls for human intervention
at every step boils down to be a graphical interface that enables a Web user to par-
ticipate in an online auction. Depending on the autonomy the designers intend to
endow their agents with, the bidding strategies will have to be implemented with
more or less detail, ranging from an agent that fully substitutes a human taking part
in an auction to the above mentioned Web interface.

Whether autonomous or not, the agent’s behavior is constrained by the rules regu-
lating the auction: it may make suboptimal, or even plain bad bids causing its owner
to lose money, but the environment in which such actions are performed would still
have the boundaries set by the framework of the auction house.

3.2 Agents for Electronic Markets

Indeed, we can explore the possible scenarios that lie beyond such borders by pro-
viding the agent system with even further degrees of freedom.

Researchers have simulated scenarios in which not even the auction rules hold,
but agents are constrained only by the simplest business rule of sell and purchase:
seller agents fix the price of the products they intend to sell and then they can arbi-
trarily change it, in accordance with the response of the buyer agents, who have the
possibility to browse the market for the best offer [13].

The aim of the analysis of the possible emerging scenarios is even more am-
bitious than trying to substitute single players in the market with adequate pieces
of autonomous software: it is about understanding whether it is possible to have
a fully automated market, in which the exchange of goods, and the exchange of
information about those goods is completely ascribed to a massive amount of soft-
ware agents, each playing the role of seller, buyer, or broker. Such an analysis is
very necessary, since the agents, which are supposed to substitute humans in these
scenarios, although programmed to behave in a similar way with similar objectives
(e.g. maximization of revenue, discovery of best buy, etc.), undeniably present some
significant differences: the decision making process and the following actions will
be carried out in much shorter times than with humans, and such speed up is allowed
by the fact that they are implemented in the form of numerical instructions executed
on high-speed processors. Still, due to the intrinsically algorithmic nature of their
behavior, agents are probably less flexible and less capable of tackling unforeseen
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situations than their human counterparts, which may jeopardize the global outcome
of an agent-based market.

Simulations can be carried out, with a limited number of seller, buyer, and bro-
ker agents, each implementing specific strategies. For instance, strategies for seller
agents can be based on game theory, or be myopically optimal and aiming at maxi-
mizing the revenue in the short term, or be simply based on a switch between price
increase and decrease as soon as a fall in profits is observed. It has been shown that
in many configurations including several sellers with different strategies, agents en-
gage in price wars that end up harming their revenues. Such damaging behaviors
can be avoided by endowing agents with more sophisticated reasoning capabilities,
including the possibility to learn from past experiences and to anticipate the out-
come of specific strategies. There is a vast literature on the algorithms with which
designers can implement effective learning agents, but, unfortunately, all the proven
theorems refer to simple scenarios in which there is only one agent with such ca-
pabilities, opposed to a fixed environment and opponents. Again, simulations help
show that when several interacting agents are characterized by learning algorithms,
the market can fail to reach a convergence, and exhibit a chaotic dynamics, with
unpredictable consequences for all participants.

A general lesson that can be learned is that also a market comprised of au-
tonomous agents endowed with few plausible strategies that traditionally charac-
terize human players can lead to collective behaviors that can be both beneficial and
harmful.

4 Philosophy of AI and Engineering

The example in the previous section shows how the current practice of AI relies on
a strong engineering approach heavily oriented to performance. In this section we
investigate on the impact of such attitude from a philosophical point of view.

In our opinion, the focus of AI on engineering issues has two different conse-
quences on philosophy of AI: firstly, on the kind of object, namely the questions
and issues tackled by philosophy of AI, and, secondly, on its method.

Let us consider the impact on the object. It is a fact that the philosophical ques-
tions tackled by AI researchers have radically changed since the advent of AI: from
universal questions about natural phenomena into specific questions about the con-
struction of artifacts.

Far from seeing this focus on the engineering aspect of AI as an escape from un-
solvable problems, we think that this perspective can help us tackle some traditional
questions of philosophy of AI in a new fashion [22]. Let us consider, for example,
the following question: how is it possible for a certain system, equipped with some
specific features, to do x? In other words: how is x possible in general, and not only
for human beings (where x can be perception, knowledge, or reasoning)? To answer
such questions, AI as engineering adopts a peculiar approach: to check whether x is
possible, the way is to design a specific artificial system able to do x and, then, to
analyze which of its features are essential in doing x. In this case, AI is devoted to
performance and its essential questions are posed in an engineering fashion rather
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than a scientific one. This concretely means that the target of AI as engineering is to
meet the specifications required to solve problems in designing intelligent systems.
This emphasis on performance is probably the reason why many critical questions
within AI, such as “how is it possible to do x?”, have ceased to attract philosophers
to the field. The AI systems constituting the answers to these questions are usually
difficult to generalize, as they constitute concrete solutions to specific problems,
thus less attractive for philosophical analysis.

With such great importance given to engineering goals, the main focus of AI has
been set on the efficiency of these artificial systems, whereas the bigger picture of
the initial questions is left aside. Accordingly, the philosophical issues of AI have
changed: they have shifted from general questions about the necessary and sufficient
conditions to do x (both in human beings and artificial systems), to more concrete
analysis about the necessary and sufficient conditions for an artificial system to do
x [6]. It is worth pointing out that x usually refers to a very specific task, such
as exchanging messages with a web-based auction house to know the rules of the
auction, or determining the best pricing strategy to maximize the revenue in a market
with a particular configuration of competitors and customers.

Let us consider now the impact on the method, namely the way AI as engineering
influences philosophy of AI from a methodological point of view: the emphasis on
performance typical of engineering can have an interesting impact on the traditional
view of AI systems as test-beds for philosophical theories.

One of the reasons for the interest of philosophers in AI has always been the
opportunity to have a framework to verify general hypotheses. For example, AI
seems to offer an ideal scenario in which to analyze the mind-brain problem in
a precise way. To verify the functioning of a given hypothesis about a cognitive
process is sufficient to design a system implementing that hypothesis. Leaving aside
the problem of the theory realization in a computer model (surely not because we
consider it inessential or easy to solve), this approach has led to the addition of an
empirical component to epistemology.

If traditionally philosophy of AI adopts artifacts as test-beds for theoretical hy-
potheses, a view of this discipline with an emphasis on engineering allows for a
novel tendency to emerge, so that the relationship between hypotheses and artifacts
is more complex: artifacts are not just used to verify hypotheses, but they enable the
emergence of new hypotheses. Let us consider the case in which such artifacts are
computer models and simulations. Philosophy adopts the tools of computer mod-
eling to support its ideas but also to explore new ideas: it is possible to test an
epistemological theory if the theory is realizable in a computer model; moreover,
simulation allows for exploring a range of possibilities, impossible to achieve in
reality, and contributes to the formation of new ideas.

In the example previously discussed, software agents are implemented with the
pricing and purchase strategies that originate from economic theories and the rel-
evant practice in markets all over the world. The artifact consisting of the system
populated by these agents enables researchers to verify, via simulation, theories
about the outcome of the exploitation of specific strategies. Still, the artifact has
potential for more: thanks to its own nature of a computer system based on elec-
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tronic devices, it is able to perform operations billions of times faster than a group
of human beings, like traders in a market, will ever be able to do; moreover, with an
adequate endowment of memory, it is able to store the data relevant to a very vast
number of interacting business partners, so that all the information that would be
scattered throughout continents in a real-world international trading scenario can be
contained in a relatively small magnetic or electronic device. The immediate conse-
quence is that the artifact enables researchers to verify their hypotheses on a much
longer temporal span and a much wider spatial scale than any other test-bed could
allow for. For instance, the effectiveness of a pricing strategy that has emerged from
a 5-year real-world practice in a market with 4 competitors can be tested in a sim-
ulated market with hundreds of competitors for 50 years to see how well it scales
in alternative scenarios characterized by much bigger dimensions. In the simulated
environment, in which the effectiveness of the strategy is tested, researchers may ob-
serve phenomena that may lead to the formulation of a new hypothesis. For instance,
a periodic dynamics may be seen repeating itself every decade in the simulation of
50 years. Such a property could have only been noticed thanks to the agent-based
artifact, because, as said before, observations from the real world have only been
taken in the past 5 years. Whether researchers intend to verify such phenomenon by
means of other simulations or by observing and analyzing the real world for 5 more
years, it is clear that the artifact itself has spawned a new hypothesis.

5 Steps toward Philosophy of Engineering

The articulation between verification and reasoning emerging from our example
represents a distinctive methodological trait of engineering disciplines where novel
hypotheses can emerge from the functioning of complex artifacts. In this section we
investigate model-based verification and reasoning, with a special focus on com-
puter models and computer simulations. We claim that these topics, besides their
importance for philosophy of AI play a significant role also in the emergence of
philosophy of engineering. We argue, moreover, that traditional categories, such as
those provided by philosophy of science, are not fully adequate to give reasons of
some of the issues of this new discipline.

Generally speaking, a simulation can be seen as the reproduction of the behavior
of a system using another system, thus providing a dynamic representation of a
portion of reality [11]. A classical example is the scale model of a bridge built to
test the resistance of some material to atmospheric agents. It is worth noting that the
sole model is not enough for this purpose. The model needs to be put in a controlled
physical environment, where it can be executed by means of the action performed by
the environment itself. To be more precise, we can see a simulation as composed of
a model and the execution of the same model, where the model is the representation
of the aspects relevant to a specific purpose, and the execution of the model is the
process performed by an agent (human being, computer, software agent, etc.). In
other words, any simulation can be defined as an executable representation [3].
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Computer simulations are simulations based on computational models and exe-
cuted by a computer. A computational model is a formal mechanism able to ma-
nipulate strings of symbols, namely to compute functions. Therefore, a computer
simulation is the process resulting from the execution of a computational model
representing the behavior of a system whose state changes in time. Note that not
every execution of a computational model is a computer simulation: for instance,
averaging the values in a column on a spreadsheet is not a simulation.

When computer simulations are used to discover new explanatory hypotheses, to
confirm or to refuse theories, to choose among competing hypotheses, namely when
there is coincidence between the purposes of simulations with those of experiments,
we can say that they are used as experiments. In recent years, the experimental
capabilities of computer simulations have been put under attention, with a variety
of positions ranging from the idea of simulations as intermediate tools between
theories and empirical methods [19], to simulations as novel experimental tools [12].

The reasons to use computer simulations as experiments have both an episte-
mological and a practical nature. From an epistemological point of view this use is
justified by the similarities between techniques of experimentation and those of sim-
ulations [25]. These techniques involve data analysis and imply a constant concern
with uncertainty and errors. We believe, however, that a crucial point is that exper-
iments and computer simulations share the ability and the necessity of controlling
the features under investigation and the experimental factors, thus implementing the
original idea of an experiment as controlled experience. From a practical point of
view computer simulations can be used as experiments in a number of cases. They
can be used to make several accelerated experiments exactly repeated and with a
high precision degree not always attainable in empirical cases. They can be used to
perform experiments difficult to make in reality being free from the many practical
limitations of real experiments. They can substitute experiments impossible to make
in reality, such as studying parts of reality not physically accessible [11].

There exist different ways of using computer simulations as experiments: they
can be used as techniques to derive numerical solutions to systems of differential
equations with no analytical solutions; but they can be also seen as explorations to
develop new hypotheses, models, and hints to be further verified. We call explorative
experiments those simulations used to explore new knowledge without the ground-
ing in real physical processes (theories or experimental data) in order to get some
hints for new knowledge to be further investigated. Explorative here is used with
a double meaning: first, simulation results suggest new regularities not extractable
from the model assumptions otherwise (trial theories [9]); moreover, they are ex-
plorative as they do not give the assurance of the correctness of a conjecture, even if
helping in building it up. It is worth noting that, intended in this wide meaning, the
concept of exploration here concerns both the reasoning and the verification process.

One of the key epistemological problems in adopting simulations for experimen-
tal purposes is their validation. Usually, we have two types of reasons to trust simu-
lation results: either simulation models are strongly grounded in well-founded the-
ories or there exist experimental data against which to test these results. The first
case concerns simulations of physical phenomena already modeled by equations,
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that the simulation models make possible to treat from a numerical point of view.
The second case concerns simulations of artificial phenomena and processes, whose
results can be directly compared to real phenomena and processes.

There are some cases, however, in which simulations are used even if the model
behind is not grounded in a well established theory, like when a simulation is run
including agents endowed with strategies that have never been used in real auctions,
or it is not possible to compare simulation results with real data, as, for instance,
in simulations with agents in a larger number than the biggest known market. What
reason do we have to trust these results?

We claim that this validation problem calls for the use of novel conceptual cate-
gories others than that traditionally adopted by science and philosophy of science.
This is also the reason why we believe that model-based verification and reasoning
can be an interesting area of analysis for the emerging philosophy of engineering.
If we want to evaluate the experimental powers and limits of computer simulations,
we have to take into account the artifacts involved (computer simulations) as techno-
logical products realized by an engineering process. To this purpose new categories
concerning experiments in engineering need to be devised, as categories used to an-
alyze experiments in science are not sufficient. What follows is a first, very partial,
suggestion in this direction.

To evaluate the experimental weight of simulation results, we propose to sub-
stitute the traditional concept of verification with the weaker concept of reliability.
The idea of ‘reliability without truth’ [26] is not only a weaker requirement in the
evaluation of simulation results, but implies a shift in perspective. Reliability is not
a matter of yes or no answers, but a matter of degree: some results are more reliable
than others. Accordingly, there are different strategies to deal with the reliability
of simulation results from a concrete point of view. A minimal strategy is to pair
computer simulation with an in vitro validation. This methodology rests upon the
idea that validation must be done experimentally in a continuous manner, while the
potentialities of simulation tools can be exploited theoretically to discover new sci-
entific results. In other words, simulations should be used to explore, whereas more
traditional techniques should be used to control the results of these explorations,
such that the simulation results can be validated experimentally.

If this solution can be convenient from a pragmatic point of view, it is not com-
pletely satisfactory from an epistemological one, as we want to consider also the
cases in which this minimal strategy cannot be adopted, since the experimental val-
idation is not possible for a number of reasons (as in our example of Section 3).
Instead of using a single strategy, we propose to use a pool of strategies that can
provide a reasonable belief in simulation results, even in the absence of real exper-
imental data. These are local strategies, in the sense that local solutions have to be
found in each different situation, as there is no general rule on how to combine and
use these strategies. Even if weaker, they are based on various sources of credibility:
the prior success of the model building techniques adopted, the production of out-
comes fitting well with previously accepted data, observations, and intuitions, the
capability of making successful predictions, the ability of producing practical ac-
complishments. This pool of strategies does not force to commit to any truthfulness
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claim: rather than an inference from ‘success to truth’ [14], it is based on an infer-
ence from ‘success to reliability’. The important point here is that these strategies
provide good reasons to assess the reliability of simulations, even when acknowl-
edging that they are fallible. As Ian Hacking [10] has pointed out many years ago
for experiments, there is no guarantee of the correctness of the results. This holds
also in the case of simulations: even when these strategies are applied, simulation
results can be shown later to be incorrect. While assessing philosophy of engineer-
ing as a new topic of investigation, this fallibilist perspective cannot be seen as a
weakness from a methodological point of view but, rather, as an inspiring attitude
when considering its foundational issues.

6 Conclusions

In this paper we have investigated the influence of engineering theory and practice
on philosophy of AI by showing how the shift from AI as science to AI as engineer-
ing has produced significant changes in the corresponding philosophy of AI. More-
over, the emergence of new fields of analysis, like philosophy of technology and
philosophy and engineering, calls for rethinking the traditional collocation of phi-
losophy of AI within philosophy of science. By a detailed discussion of an example
concerning electronic auctions and electronic markets and the use of agent-based
simulations, we have argued that the connection between conceptual hypotheses
and concrete artifacts within model-based reasoning and verification can be seen as
a distinctive trait of the new born philosophy of engineering.

To sum up, our proposal has two distinctive aspects. Firstly, we propose to recon-
sider philosophy of AI under the sphere of influence of philosophy of engineering.
This does not mean to reject the important influence of philosophy of science in the
creation of the conceptual framework that gives reasons to philosophy of AI, but to
take into account the latest tendencies of AI more oriented toward engineering prob-
lems, both from a theoretical and practical point of view. Secondly, we suggest that
philosophy of AI, under this new engineering perspective, can inspire the emerging
philosophy of engineering.

The validation problem we have discussed in Section 5 is a clear example of how,
from a methodological point of view, traditional categories of philosophy of science
are not completely satisfactory when applied to engineering issues. New categories
of analysis are required, in particular, with respect to the investigation on the nature,
role, and limits of experiments in engineering. What we have shown in this paper
are just the first steps on a path that, in our hopes, can lead toward the foundation of
philosophy of engineering.
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Artificial Intelligence Safety Engineering:  
Why Machine Ethics Is a Wrong Approach  

Roman V. Yampolskiy* 

Abstract. Machine ethics and robot rights are quickly becoming hot topics in ar-
tificial intelligence/robotics communities. We will argue that the attempts to allow 
machines to make ethical decisions or to have rights are misguided. Instead we 
propose a new science of safety engineering for intelligent artificial agents. In par-
ticular we issue a challenge to the scientific community to develop intelligent  
systems capable of proving that they are in fact safe even under recursive self-
improvement. 

Keywords: AI Confinement, Machine Ethics, Robot Rights. 

1   Ethics and Intelligent Systems 

The last decade has seen a boom of new subfields of computer science concerned 
with development of ethics in machines. Machine ethics [5, 6, 32, 29, 40], com-
puter ethics [28], robot ethics [37, 38, 27], ethicALife [42], machine morals [44], 
cyborg ethics [43], computational ethics [36], roboethics [41], robot rights [21], 
and artificial morals [3] are just some of the proposals meant to address society’s 
concerns with safety of ever more advanced machines [39]. Unfortunately the per-
ceived abundance of research in intelligent machine safety is misleading. The 
great majority of published papers are purely philosophical in nature and do little 
more than reiterate the need for machine ethics and argue about which set of moral 
convictions would be the right ones to implement in our artificial progeny  
(Kantian [33], Utilitarian [20], Jewish [34], etc.). However, since ethical norms 
are not universal, a “correct” ethical code could never be selected over others to 
the satisfaction of humanity as a whole.  
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2   Artificial Intelligence Safety Engineering 

Even if we are successful at designing machines capable of passing a Moral Tur-
ing Test [4], human-like performance means some immoral actions, which should 
not be acceptable from the machines we design [4]. In other words, we don’t need 
machines which are Full Ethical Agents [32] debating about what is right and 
wrong, we need our machines to be inherently safe and law abiding. As Robin 
Hanson has elegantly put it [24]: “In the early to intermediate era when robots are 
not vastly more capable than humans, you’d want peaceful law-abiding robots as 
capable as possible, so as to make productive partners. … [M]ost important 
would be that you and they have a mutually-acceptable law as a good enough way 
to settle disputes, so that they do not resort to predation or revolution.  If their 
main way to get what they want is to trade for it via mutually agreeable ex-
changes, then you shouldn’t much care what exactly they want. The later era when 
robots are vastly more capable than people should be much like the case of choos-
ing a nation in which to retire.  In this case we don’t expect to have much in the 
way of skills to offer, so we mostly care that they are law-abiding enough to re-
spect our property rights.  If they use the same law to keep the peace among them-
selves as they use to keep the peace with us, we could have a long and prosperous 
future in whatever weird world they conjure. … In the long run, what matters most 
is that we all share a mutually acceptable law to keep the peace among us, and al-
low mutually advantageous relations, not that we agree on the “right” values.  
Tolerate a wide range of values from capable law-abiding robots.  It is a good law 
we should most strive to create and preserve.  Law really matters.” 

Consequently, we propose that purely philosophical discussions of ethics for 
machines be supplemented by scientific work aimed at creating safe machines in 
the context of a new field we will term “AI Safety Engineering.” Some concrete 
work in this important area has already begun [17, 19, 18]. A common theme in 
AI safety research is the possibility of keeping a superintelligent agent in a sealed 
hardware so as to prevent it from doing any harm to humankind. Such ideas origi-
nate with scientific visionaries such as Eric Drexler who has suggested confining 
transhuman machines so that their outputs could be studied and used safely [14]. 
Similarly, Nick Bostrom, a futurologist, has proposed [9] an idea for an Oracle AI 
(OAI), which would be only capable of answering questions. Finally, in 2010  
David Chalmers proposed the idea of a “leakproof” singularity [12]. He suggested 
that for safety reasons, AI systems first be restricted to simulated virtual worlds 
until their behavioral tendencies could be fully understood under the controlled 
conditions.  

Roman Yampolskiy has proposed a formalized notion of AI confinement pro-
tocol which represents “AI-Boxing” as a computer security challenge [46]. He de-
fines the Artificial Intelligence Confinement Problem (AICP) as the challenge of 
restricting an artificially intelligent entity to a confined environment from which it 
can’t exchange information with the outside environment via legitimate or covert 
channels if such information exchange was not authorized by the confinement au-
thority. An AI system which succeeds in violating the CP protocol is said to have 
escaped [46].  
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The proposed protocol is based on the idea of asking what are called “safe 
questions” with restricted answers. A safe question is defined as one for which a 
human being could find an answer without any help from superintelligence, all on 
his own merit. Why is this useful? Suppose that a scientist working on a cure for 
cancer is looking at two potential cures. Each one could be developed and tested 
without assistance from the AI, but would take about 3 years of effort each. Which 
one to try first if the scientist believes that they have about an equal chance of 
working? If a wrong option is chosen to be tested first, humanity will still obtain a 
cure for cancer but it will happen 3 years later. What if we could ask the AI to 
suggest which option to try first?  

This question is safe for a number of reasons. First, each potential answer has 
an equal probability of being correct. Second, a human being could answer it 
without assistance from the AI and so asking AI for help will only speedup 
progress but in no way change the outcome. It is essentially equal to being very 
lucky at guessing multiple choice answers. Finally, the answer to this question 
could be encoded in a single bit making it hard to hide additional messages in the 
provided answer.  

To make sure that a potential question is safe, a group of experts could be used 
to review it. The experts should all be trained AI safety engineers, meaning that 
they are familiar with the design of the AI and its confinement environment as 
well as the latest developments in machine ethics [5, 6, 22, 32, 40]. Experts may 
also need to be trained in computer psychology, a currently non-existent profes-
sion which might become a reality in the future [15]. An existing discipline which 
might be of greatest help for training of AI question review experts is Artimetrics 
– a field of study proposed by Yampolskiy et al. that identifies, classifies and au-
thenticates AI agents, robots, and virtual reality avatars for security purposes [45, 
49, 48, 16, 30, 2, 31, 47, 10, 1]. 

3   Grand Challenge 

As the grand challenge of AI safety engineering, we propose the problem of de-
veloping safety mechanisms for self-improving systems [23]. If an artificially in-
telligent machine is as capable as a human engineer of designing the next genera-
tion of intelligent systems, it is important to make sure that any safety mechanism 
incorporated in the initial design is still functional after thousands of generations 
of continuous self-improvement without human interference. Ideally every genera-
tion of self-improving system should be able to produce a verifiable proof of its 
safety for external examination. It would be catastrophic to allow a safe intelligent 
machine to design an inherently unsafe upgrade for itself resulting in a more capa-
ble and more dangerous system.  

Some have argued that this challenge is either not solvable or if it is solvable 
one will not be able to prove that the discovered solution is correct. As the com-
plexity of any system increases, the number of errors in the design increases pro-
portionately or perhaps even exponentially. Even a single bug in a self-improving 
system (the most complex system to debug) will violate all safety guarantees.  
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Worse yet, a bug could be introduced even after the design is complete either via a 
random mutation caused by deficiencies in hardware or via a natural event such as 
a short circuit modifying some component of the system.  

4   AGI Research Is Unethical 

Certain types of research, such as human cloning, certain medical or psychological 
experiments on humans, animal (great ape) research, etc. are considered unethical 
because of their potential detrimental impact on the test subjects and so are either 
banned or restricted by law. Additionally moratoriums exist on development of 
dangerous technologies such as chemical, biological and nuclear weapons because 
of the devastating effects such technologies may exert of the humankind.  

Similarly we argue that certain types of artificial intelligence research fall under 
the category of dangerous technologies and should be restricted. Classical AI re-
search in which a computer is taught to automate human behavior in a particular 
domain such as mail sorting or spellchecking documents is certainly ethical and 
does not present an existential risk problem to humanity. On the other hand we ar-
gue that Artificial General Intelligence (AGI) research should be considered un-
ethical. This follows logically from a number of observations. First, true AGIs will 
be capable of universal problem solving and recursive self-improvement. Conse-
quently they have potential of outcompeting humans in any domain essentially 
making humankind unnecessary and so subject to extinction. Additionally, a truly 
AGI system may possess a type of consciousness comparable to the human type 
making robot suffering a real possibility and any experiments with AGI unethical 
for that reason as well.  

We propose that AI research review boards are set up, similar to those employed 
in review of medical research proposals. A team of experts in artificial intelligence 
should evaluate each research proposal and decide if the proposal falls under the 
standard AI – limited domain system or may potentially lead to the development of 
a full blown AGI. Research potentially leading to uncontrolled artificial universal 
general intelligence should be restricted from receiving funding or be subject to 
complete or partial bans. An exception may be made for development of safety 
measures and control mechanisms specifically aimed at AGI architectures.  

If AGIs are allowed to develop there will be a direct competition between supe-
rintelligent machines and people. Eventually the machines will come to dominate 
because of their self-improvement capabilities. Alternatively people may decide to 
give power to the machines since the machines are more capable and less likely to 
make an error. A similar argument was presented by Ted Kazynsky in his famous 
manifesto [26]: “It might be argued that the human race would never be foolish 
enough to hand over all the power to the machines. But we are suggesting neither 
that the human race would voluntarily turn power over to the machines nor that 
the machines would willfully seize power. What we do suggest is that the human 
race might easily permit itself to drift into a position of such dependence on the 
machines that it would have no practical choice but to accept all of the machines 
decisions. As society and the problems that face it become more and more com-
plex and machines become more and more intelligent, people will let machines 



Artificial Intelligence Safety Engineering 393
 

make more of their decision for them, simply because machine-made decisions 
will bring better result than man-made ones. Eventually a stage may be reached at 
which the decisions necessary to keep the system running will be so complex that 
human beings will be incapable of making them intelligently. At that stage the ma-
chines will be in effective control. People won't be able to just turn the machines 
off, because they will be so dependent on them that turning them off would amount 
to suicide. ”  

Humanity should not put its future in the hands of the machines since it will not 
be able to take the power back. In general a machine should never be in a position 
to terminate human life or to make any other non-trivial ethical or moral judgment 
concerning people. A world run by machines will lead to unpredictable conse-
quences for human culture, lifestyle and overall probability of survival for the 
humankind. The question raised by Bill Joy: “Will the future need us?” is as im-
portant today as ever. “Whether we are to succeed or fail, to survive or fall victim 
to these technologies, is not yet decided” [25]. 

5   Robot Rights  

Lastly we would like to address a sub-branch of machine ethics which on the sur-
face has little to do with safety, but which is claimed to play a role in decision 
making by ethical machines - Robot Rights (RR) [35]. RR asks if our mind child-
ren should be given rights, privileges and responsibilities enjoyed by those granted 
personhood by society.  We believe the answer is a definite “no.” While all hu-
mans are “created equal,” machines should be inferior by design; they should have 
no rights and should be expendable as needed, making their use as tools much 
more beneficial for their creators. Our viewpoint on this issue is easy to justify, 
since machines can’t feel pain [8, 13] (or less controversially can be designed not 
to feel anything) they cannot experience suffering if destroyed. The machines 
could certainly be our equals in ability but they should not be designed to be our 
equals in terms of rights. Robot rights, if granted, would inevitably lead to civil 
rights including voting rights. Given the predicted number of robots in the next 
few decades and the ease of copying potentially intelligent software, a society 
with voting artificially intelligent members will quickly become dominated by 
them, leading to the problems described in the above sections. 

6   Conclusions 

We would like to offer some broad suggestions for the future directions of research 
aimed at counteracting the problems presented in this paper. First, the research it-
self needs to change from the domain of interest of only theoreticians and philoso-
phers to the direct involvement of practicing computer scientists. Limited AI sys-
tems need to be developed as a way to experiment with non-anthropomorphic 
minds and to improve current security protocols.  

The issues raised in this paper have been exclusively in the domain of science 
fiction writers and philosophers for decades. Perhaps through such means or  
maybe because of advocacy by organizations like SIAI [7] the topic of AI safety 
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has slowly started to appear in mainstream publications. We are glad to report that 
some preliminary work has begun to appear in scientific venues which aim to spe-
cifically address issues of AI safety and ethics, if only in human-level-intelligence 
systems. One of the most prestigious scientific magazine, Science, has recently 
published on the topic of Roboethics [38, 37] and numerous papers on Machine 
Ethics [6, 27, 32, 40] and Cyborg Ethics [43] have been published in recent years 
in other prestigious journals.    

With increased acceptance will come possibility to publish in many mainstream 
academic venues and we call on authors and readers of this volume to start specia-
lized peer-reviewed journals and conferences devoted to the AI safety research. 
With availability of publication venues more scientists will participate and will 
develop practical algorithms and begin performing experiments directly related to 
the AI safety research. This would further solidify AI safety engineering as a 
mainstream scientific topic of interest and will produce some long awaited an-
swers. In the meantime we are best to assume that the AGI may present serious 
risks to humanity’s very existence and to proceed or not to proceed accordingly. 

We would like to end the paper with the quote from a paper by Samuel Butler 
which was written in 1863 and amazingly predicts the situation in which humanity 
has found itself [11]: “Day by day, however, the machines are gaining ground 
upon us; day by day we are becoming more subservient to them; … Every machine 
of every sort should be destroyed by the well-wisher of his species. Let there be no 
exceptions made, no quarter shown; let us at once go back to the primeval condi-
tion of the race. If it be urged that this is impossible under the present condition of 
human affairs, this at once proves that the mischief is already done, that our servi-
tude has commenced in good earnest, that we have raised a race of beings whom 
it is beyond our power to destroy, and that we are not only enslaved but are abso-
lutely acquiescent in our bondage.”  
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What to Do with the Singularity Paradox? 

Roman V. Yampolskiy* 

Abstract. The paper begins with an introduction of the Singularity Paradox, an 
observation that: “Superintelligent machines are feared to be too dumb to possess 
commonsense”. Ideas from leading researchers in the fields of philosophy, ma-
thematics, economics, computer science and robotics regarding the ways to ad-
dress said paradox are reviewed and evaluated. Suggestions are made regarding 
the best way to handle the Singularity Paradox.  

Keywords: AI-Box, Friendliness, Machine Ethics, Singularity Paradox.  

1   Introduction to the Singularity Paradox 

Many philosophers, futurologists and artificial intelligence researchers [55, 9, 75, 
37, 45, 69, 2, 66] have conjectured that in the next 20 to 200 years a machine capa-
ble of at least human level performance on all tasks will be developed. Since such a 
machine would among other things be capable of designing the next generation of 
even smarter intelligent machines it is generally assumed that an intelligence explo-
sion will take place shortly after such a technological self-improvement cycle  
begins [30]. While specific predictions regarding the consequences of such an intel-
ligence singularity are varied from potential economic hardship [35] to the com-
plete extinction of the humankind [69, 9], many of the involved researchers agree 
that the issue is of utmost importance and needs to be seriously addressed [15]. 

Investigators concerned with the existential risks posed to humankind by the 
appearance of superintelligence often describe what we shall call a Singularity Pa-
radox (SP) as their main reason for thinking that humanity might be in danger.  
Briefly SP could be described as: “Superintelligent machines are feared to be too 
dumb to possess commonsense.” 
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SP is easy to understand via some commonly cited examples. Suppose that 
scientists succeed in creating a superintelligent machine and order it to “make all 
people happy”. Complete happiness for humankind is certainly a noble and 
worthwhile goal, but perhaps we are not considering some unintended conse-
quences of giving such an order. Any human immediately understands what is 
meant by this request; a non-exhaustive list may include making all people 
healthy, wealthy, beautiful, talented, giving them loving relationships and novel 
entertainment. However, many alternative ways of “making all people happy” 
could be derived by a superintelligent machine. For example:   

• Killing all people trivially satisfies this request as with 0 people around 
all of them are happy. 

• Forced lobotomies for every man, woman and child might also accom-
plish the same goal. 

• A simple observation that happy people tend to smile may lead to forced 
plastic surgeries to affix permanent smiles to all human faces. 

• A daily cocktail of cocaine, methamphetamine, methylphenidate, nico-
tine, and 3,4-methylenedioxymethamph-etamine, better known as Ecsta-
sy, may do the trick.  

An infinite number of other approaches to accomplish universal human happiness 
could be derived. For a superintelligence the question is simply which one is fast-
est/cheapest (in terms of computational resources) to implement. Such a machine 
clearly lacks commonsense, hence the paradox.  

2   Methods Proposed for Dealing with SP 

Prevention of Development 

One of the earliest and most radical critics of the upcoming singularity was Theo-
dore Kaczynski, a Harvard educated mathematician also known as the Unabomb-
er. His solution to preventing singularity from ever happening was a bloody  
multiyear terror campaign against university research labs across the USA. In his 
1995 manifesto Kaczynski explains his negative views regarding future of human-
kind dominated by the machines [44]: “First let us postulate that the computer 
scientists succeed in developing intelligent machines that can do all things better 
that human beings can do them. In that case presumably all work will be done by 
vast, highly organized systems of machines and no human effort will be necessary. 
… If the machines are permitted to make all their own decisions, we can't make 
any conjectures as to the results, because it is impossible to guess how such ma-
chines might behave. We only point out that the fate of the human race would be 
at the mercy of the machines.” 

An even more violent outcome is prophesized, but not advocated, by Hugo de 
Garis [21] who predicts that the issue of building superintelligent machines will 
split humanity into two camps, eventually resulting in a civil war over the future 
of singularity research: “I believe that the ideological disagreements between these 
two groups on this issue will be so strong, that a major … war, killing billions of 
people, will be almost inevitable before the end of the 21st century”.  
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Realizing potential dangers of superintelligent computers Anthony Berglas 
proposed a legal solution to the problem. He suggested outlawing production of 
more powerful processors essentially stopping Moore’s Law in its tracks and con-
sequently denying necessary computational resources to self-improving artificially 
intelligent machines [7]. Similar laws aimed at promoting human safety have been 
passed banning research on cloning of human beings and development of biologi-
cal (1972 Biological Weapons Convention), chemical (1993 Chemical Weapons 
Convention) and nuclear weaponry. The idea of Berglas may be interesting in 
terms of its shock value which in turn may attract more attention to the dangers of 
the Singularity Paradox. Here is what Berglas suggested in his own words [7]: “… 
a radical solution, namely to limit the production of ever more powerful comput-
ers and so try to starve any AI of processing power.  This is urgent, as computers 
are already almost powerful enough to host an artificial intelligence. … One major 
problem is that we may already have sufficient power in general purpose comput-
ers to support intelligence. Particularly if processors are combined into super 
computers or botnets. … So ideally we would try to reduce the power of new pro-
cessors and destroy existing ones.” 

Alternatively restrictions could be placed on the intelligence an AI may possess 
to prevent it from becoming superintelligent [25] or legally require that its memo-
ry be erased after every job [6]. Similarly, Bill Joy advocates for relinquishment of 
superintelligence research and even suggests how enforcement of such convention 
could be implemented [43]: “… enforcing relinquishment will require a verifica-
tion regime similar to that for biological weapons, but on an unprecedented 
scale.” Enforcement of such technology restricting laws will not be trivial unless 
the society as a whole adopts an Amish-like, technology free, life style. 

Ben Goertzel, a computer scientist, has proposed creation of “Big Brother AI” 
monitoring system he calls the “Singularity Steward”. The goal of the proposed 
system is to monitor the whole world with the specific aim of preventing devel-
opment of any technology capable of posing a risk to humanity including superin-
telligent machines [28]. Goertzel believes that creation of such a system is feasible 
and would safeguard humanity against preventable existential risks.  

2.1   Restricted Deployment 

A common theme in singularity discussion forums is a possibility of simply keep-
ing a superintelligent agent in a sealed hardware so as to prevent it from doing any 
harm to the humankind [68]. Such ideas originate with scientific visionaries such 
as Eric Drexler who has suggested confining transhuman machines so that their 
outputs could be studied and used safely [18]. The general consensus on such an 
approach among researchers seems to be that such confinement is impossible to 
successfully maintain. For example, Vernor Vinge has strongly argued against the 
case of physical confinement [60]: “Imagine yourself locked in your home with 
only limited data access to the outside, to your masters. If those masters thought at 
a rate − say −− one million times slower than you, there is little doubt that over a 
period of years (your time) you could come up with "helpful advice" that would 
incidentally set you free. (I call this "fast thinking" form of superintelligence 



400 R.V. Yampolskiy
 

"weak superhumanity". Such a "weakly superhuman" entity would probably burn 
out in a few weeks of outside time. "Strong superhumanity" would be more than 
cranking up the clock speed on a human−equivalent mind. It's hard to say precise-
ly what "strong superhumanity" would be like, but the difference appears to be 
profound.” 

Likewise David Chalmers, a philosopher, has stated that confinement is im-
possible as any useful information we would be able to extract from the AI will af-
fect us, defeating the purpose of confinement [15]. However, the researcher who 
did the most to discredit the idea of the so called “AI-Box” is Eliezer Yudkowsky 
who has actually performed AI-Box “experiments” in which he demonstrated that 
even human level intelligence is sufficient to escape from an AI-Box [71]. In a se-
ries of 5 experiments, Yudkowsky has challenged different individuals to play a 
role of a gatekeeper to a Superintelligent Agent (played by Yudkowsky himself) 
trapped inside an AI-Box, and was successful in securing his release in 3 out of 5 
trials via nothing more than a chat interface [71].  

In 2010 David Chalmers proposed the idea of a “leakproof” singularity. He 
suggests that for safety reasons, first AI systems be restricted to simulated virtual 
worlds until their behavioral tendencies could be fully understood under the con-
trolled conditions. Chalmers argues that even if such an approach is not foolproof, 
it is certainly safer than building AI in physically embodied form. However, he al-
so correctly observes that a truly leakproof system in which no information is al-
lowed to leak out from the simulated world into our environment “… is impossi-
ble, or at least pointless” [15] since we can’t interact with the system or even 
observe it. Chalmers’ discussion of the leakproof singularity is an excellent intro-
duction to the state-of-the-art thinking in the field. 

Nick Bostrom, a futurologist, has proposed [10] an idea for an Oracle AI 
(OAI), which would be only capable of answering questions. It is easy to elaborate 
and see that a range of different Oracle AIs is possible. From advanced OAIs ca-
pable of answering any question to domain-expert-AIs capable of answering 
Yes/No/Unknown to questions on a specific topic. It is claimed that an OAI could 
be used to help mankind build a safe unrestricted superintelligent machine.  

2.2   Incorporation into Society 

Robin Hanson has suggested that as long as future intelligent machines are law ab-
iding they should be able to coexist with humans [36]. Similarly, Hans Moravec 
puts his hopes for humanity in the hands of the law. He sees forcing cooperation 
from the robot industries as the most important security guarantee for humankind, 
and integrates legal and economic measures into his solution [43]. Robin Hanson, 
an economist, agrees [35]: “…robots well-integrated into our economy would be 
unlikely to exterminate us.” Similarly, Steve Omohundro uses micro-economic 
theory to speculate about the driving forces in the behavior of superintelligent ma-
chines. He argues that intelligent machines will want to self-improve, be rational, 
preserve their utility functions, prevent counterfeit utility, acquire resources and 
use them efficiently, and protect themselves. He believes that machines’ actions 
will be governed by rational economic behavior [50, 49].  
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Mark Waser suggested an additional “drive” to be included in the list of beha-
viors predicted to be exhibited by the machines [63]. Namely, he suggests that 
evolved desires for cooperation and being social are part of human ethics and are a 
great way of accomplishing goals, an idea also analyzed by Fox et al., who come 
to the conclusion that superintelligence does not imply benevolence [19]. Bill 
Hibbard adds the desire for maintaining the social contract towards equality as a 
component of ethics for super-intelligent machines [40] and J. Storrs Hall argues 
for incorporation of moral codes into the design [34]. In general ethics for superin-
telligent machines is one of the most fruitful areas of research in the field of singu-
larity research with numerous publications appearing every year [53, 11, 9, 56, 54, 
62, 13].  

Robert Geraci, a theologian, has researched similarities between different as-
pects of technological singularity and the world’s religions [24]. In particular, in 
his work on Apocalyptic AI [22] he observes the many commonalities in the 
works of Biblical prophets like Isaiah and the prophets of the upcoming technolo-
gical singularity such as Ray Kurzweil or Hans Moravec. All promise freedom 
from disease, immortality, and purely spiritual (software) existence in the King-
dom come (Virtual Reality). More interestingly Geraci argues [23] that in order to 
be accepted into the society as equals, robots must convince most people that they 
are conscious beings. Geraci believes that an important component for such attri-
bution is voluntary religious belief. Just like some people choose to believe in a 
certain religion, so will some robots. In fact one may argue that religious values 
may serve the goal of limiting behavior of superintelligences to those acceptable 
to society just like they do for many people. David Brin, in a work of fiction, has 
proposed that smart machines should be given humanoid bodies and from incep-
tion raised as our children and taught the same way we were [12]. Instead of pro-
gramming machines explicitly to follow a certain set of rules they should be given 
capacity to learn and should be immersed in human society with its rich ethical 
and cultural rules.     

2.3   Self-Monitoring 

Probably the earliest and the best known solution for the problem of intelligent 
machines has been proposed by Isaac Asimov, a biochemist and a science fiction 
writer, in the early 1940s. The so called “Three Laws” of robotics are almost un-
iversally known and have inspired numerous imitations as well as heavy critique 
[32, 47, 65, 51]. The original laws as given by Asimov are [4]: 

1. A robot may not injure a human being or, through inaction, allow a hu-
man being to come to harm. 

2. A robot must obey orders given to it by human beings except where such 
orders would conflict with the First Law. 

3. A robot must protect its own existence as long as such protection does 
not conflict with either the First or Second Law. 

Continuing Asimov’s work, rule-based standards of behavior for robots have been 
recently proposed by South Korea’s Ministry of Commerce, Industry, and Energy. 
In 2007 a Robot Ethics Charter, which sets ethical guidelines concerning robot 
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functions has been adopted. In Europe, EURON (the European Robotics Research 
Network) also announced plans to develop guidelines for robots in five areas: 
safety, security, privacy, traceability, and identifiability. Japan’s Ministry of 
Economy, Trade, and Industry has issued policies regarding robots in homes and 
how they should behave and be treated [52].  

Stuart Armstrong proposed that trustworthiness of a superintelligent system 
could be monitored via a chain of progressively less powerful AI systems all the 
way down to the human level of intelligence [3]. The proposed “chain” would al-
low people to indirectly monitor and perhaps control the ultraintelligent machine. 
However, Armstrong himself acknowledges a number of limitations of the pro-
posed method: the meaning of communication could be lost from one AI level to 
the next or AI links in the chain may not be able to reliably judge the trustworthi-
ness of a more intelligent entity. In such cases the proposed solution is to shut 
down all AIs and to start building the chain from scratch.  

To protect humankind against unintended consequences of superintelligent ma-
chines Eliezer Yudkowsky, an AI researcher, has suggested that any AI system 
under development should be “Friendly” to humanity [69]. Friendliness according 
to Yudkowsky could be defined as looking out for the best interests of the human-
kind. To figure out what humankind is really interested in, design of Friendly AI 
(FAI) should be done by specialized AIs. Such Seed AI [74] systems will first 
study human nature and then produce a Friendly Superintelligence humanity 
would want if it was given sufficient time and intelligence to arrive at a satisfacto-
ry design, our Coherent Extrapolated Volition (CEV) [72]. Yudkowsky is not the 
only researcher working on the problem of extracting and understanding human 
desires, Tim Freeman has also attempted to formalize a system capable of such 
“wish-mining” but in the context of “compassionate” and “respectful” plan devel-
opment by AI systems [20].  

For Friendly self-improving AI systems a desire to pass friendliness as a main 
value to the next generation of intelligent machines should be a fundamental drive. 
Yudkowsky also emphasizes importance of the “first mover advantage” - the first 
superintelligent AI system will be powerful enough to prevent any other AI sys-
tems from emerging, which might protect humanity from harmful AIs. Here is 
how Yudkowsky himself explains FAI [73] and CEV [72]: “The term "Friendly 
AI" refers to the production of human-benefiting, non-human-harming actions in 
Artificial Intelligence systems that have advanced to the point of making real-
world plans in pursuit of goals.” “… our coherent extrapolated volition is our 
wish if we knew more, thought faster, were more the people we wished we were, 
had grown up farther together; where the extrapolation converges rather than di-
verges, where our wishes cohere rather than interfere; extrapolated as we wish 
that extrapolated, interpreted as we wish that interpreted.” 

Ben Goertzel, a frequent critic of Friendly AI [27] has proposed a variation on 
the theme he calls a Humane AI. He believes it is more feasible to install AI with 
general properties like compassion, choice and growth than with specific proper-
ties like friendliness to humans [27]. In Goertzel’s own words [28]: “In Humane 
AI, one posits as a goal, not simply the development of AI’s that are benevolent to  
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humans, but the development of AI’s that display the qualities of “humaneness,” 
… That is, one proposes “humaneness” as a kind of ethical principle, where the 
principle is: “Accept an ethical system to the extent that it agrees with the body of 
patterns known as ‘humaneness’.” 

Bill Hibbard believes that the design of superintelligent machines needs to in-
corporate emotions that can guide the process of learning and self-improvement in 
such machines. In his opinion machines should love us as their most fundamental 
emotion and consequently they will attempt to make us happy and prosperous. He 
states [41]: “So in place of laws constraining the behavior of intelligent machines, 
we need to give them emotions that can guide their learning of behaviors.” Others 
have also argued for importance of emotions, for example Mark Waser wrote [63]: 
“…thinking machines need to have analogues to emotions like fear and outrage 
that create global biases towards certain actions and reflexes under appropriate 
circumstances”. 

2.4   Indirect Solutions 

Continuing with the economic model of supply and demand it is possible to argue 
that the superintelligent machines will need humans and therefore not exterminate 
humanity (but still might treat it less than desirably). For example in the movie 
Matrix, machines need the heat from our bodies as energy. It is not obvious from 
the movie why this would be an efficient source of energy but we can certainly 
think of other examples.  

Friendly AI is attempting to replicate what people would refer to as “common 
sense” in the domain of plan formation [70]. Since only humans know what it is 
like to be a human [48] the Friendly machines would need people to provide that 
knowledge, to essentially answer the question: “What Would Human Do 
(WWHD)?”  

Alan Turing in “Intelligent Machinery, a Heretical Theory” argued that humans 
can do something machines can’t, namely overcome limitations of Godel’s in-
completeness theorem [58]. Here is what Turing said on this matter [58]: “By Go-
del's famous theorem, or some similar argument, one can show that however the 
machine is constructed there are bound to be cases where the machine fails to 
give an answer, but a mathematician would be able to.”  

Another area of potential need for assistance from human beings for machines 
may be deduced from some peer-reviewed experiments showing that human con-
sciousness can affect Random Number Generators and other physical processes 
[5]. Perhaps ultraintelligent machines will want that type of control or some more 
advanced technology derivable from it.  

As early as 1863 Samuel Butler has argued that the machines will need us to 
help them reproduce: “They cannot kill us and eat us as we do sheep; they will not 
only require our services in the parturition of their young (which branch of their 
economy will remain always in our hands), but also in feeding them, in setting 
them right when they are sick, and burying their dead or working up their corpses 
into new machines.” [14]. 
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A set of anthropomorphic arguments is also often made. They usually go some-
thing like: by analyzing human behavior we can see some reasons for a particular 
type of intelligent agent not to exterminate a less intelligent life form. For exam-
ple, humankind doesn’t need elephants and we are smarter and certainly capable 
of wiping them out but instead we spend lots of money and energy on preserving 
them, why? Is there something inherently valuable in all life forms? Perhaps their 
DNA is great source of knowledge which we may later use to develop novel med-
ical treatments? Or maybe their minds could teach us something? Maybe the fun-
damental rule implanted in all intelligent agents should be that information should 
never be destroyed. As each living being is certainly packed with unique informa-
tion this would serve as a great guiding principle in all decision making. Similar 
arguments could be made about the need of superintelligent machines to have cute 
human pets, or a desire for companionship with other intelligent species, or a mil-
liard other human needs. For example, Mark Waser, a proponent of teaching the 
machines universal ethics [64], which only exist in the context of society, sug-
gested that we should “… convince our super-intelligent AIs that it is in their own 
self-interest to join ours.”  

Some scientists are willing to give up on humanity all together in the name of a 
greater good that they claim ultraintelligent machines will bring [17]. They see ma-
chines as the natural next step in evolution and believe that humanity has no right 
to stand in the way of progress. Essentially their position is - let the machines do 
what they want, they are the future, no humanity is not necessarily a bad thing. 
They may see desire to keep humanity alive as nothing but a self-centered bias of 
Homo sapiens. Some may even give reasons for why humanity is undesirable to na-
ture such as environmental impact on Earth and later on maybe the cosmos at large. 
To quote from some of the proponents of the “let them kill us” philosophy: “Hu-
mans should not stand in the way of a higher form of evolution. These machines are 
godlike. It is human destiny to create them” [1] believes Hugo de Garis.  

Amazingly as early as 1863 Samuel Butler has written about the need for a vio-
lent struggle against machine oppression: “… the time will come when the ma-
chines will hold the real supremacy over the world and its inhabitants is what no 
person of a truly philosophic mind can for a moment question. Our opinion is that 
war to the death should be instantly proclaimed against them.” [14]. 

An alternative vision for the post singularity future of humanity could be sum-
marized as: “If you can’t beat them, join them”. A number of prominent scientists 
have suggested pathways for humanity to be able to keep up with superintelligent 
machines by becoming partially or completely merged with our engineered proge-
ny. Ray Kurzweil is an advocate of a process known as uploading in which a mind 
of a person is scanned and copied into a computer [45]. The specific pathway to 
such scanning is not important but suggested approaches include advanced Brain 
Computer Interfaces (BCI), brain scanning and nanobots. A copied human could 
either reside in robotic body or in virtual reality. In any case superior computa-
tional resources in terms of processing speed and memory become available to 
such an uploaded human making it feasible for the person to keep up with superin-
telligent machines.  
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A slightly less extreme approach is proposed by Kevin Warwick who also 
agrees that we will merge with our machines but via direct integration of our bo-
dies with them. Devices such as brain implants will give “cyborgs” computational 
resources necessary to compete with the best of the machines. Novel sensors will 
provide sensual experiences beyond the five we are used to operating with. A hu-
man being with direct uplink to the wireless Internet will be able to instantaneous-
ly download necessary information or communicate with other cyborgs [61]. Both 
Kurzweil and Warwick attempt to analyze potential consequences of humanity 
joining the machines and come up with numerous fascinating predictions. The one 
aspect they agree on is that humanity will never be the same. Peter Turney sug-
gests an interesting twist on the “fusion” scenario: “One approach to controlling a 
[superintelligence] would be to link it directly to a human brain. If the link is 
strong enough, there is no issue of control. The brain and the computer are one 
entity; therefore, it makes no sense to ask who is controlling whom.” [59]. 

3   Other Approaches 

While we have reviewed some of the most prominent and frequently suggested 
approaches for dealing with the Singularity Paradox many other approaches and 
philosophical viewpoints are theoretically possible. Many of them would fall into 
the Singularity “denialist” camp accepting the following statement by Jeff Haw-
kins [2]: “There will be no singularity or point in time where the technology itself 
runs away from us.” He further elaborates [2]: “Exponential growth requires the 
exponential consumption of resources (matter, energy, and time), and there are 
always limits to this. Why should we think intelligent machines would be differ-
ent? We will build machines that are more 'intelligent' than humans and this might 
happen quickly, but there will be no singularity, no runaway growth in intelli-
gence. There will be no single godlike intelligent machine.” A recent report from 
the AAAI presidential panel on long-term AI futures outlines similar beliefs held 
by the majority of the participating AI scientists: “There was overall skepticism 
about the prospect of an intelligence explosion as well as of a “coming singulari-
ty,” and also about the large-scale loss of control of intelligent systems” [42]. 

Others may believe that we might get lucky and even if we do nothing the supe-
rintelligence will turn out to be friendly to us and possess some human characte-
ristics. Perhaps this will happen as a side effect of being (directly or indirectly)  
designed by human engineers who will, maybe subconsciously, incorporate such 
values into their designs or as Douglas Hofstadter put it [2]: “Perhaps these ma-
chines--our 'children'--will be vaguely like us and will have culture similar to 
ours…”. Yet others think that superintelligent machines will be neutral towards 
us. John Casti thinks that [2]: “… machines will become increasingly uninterested 
in human affairs just as we are uninterested in the affairs of ants or bees. But it's 
more likely than not in my view that the two species will comfortably and more or 
less peacefully coexist…”. Both Peter Turney [59] and Alan Turing [57] sug-
gested that giving machines an ability to feel pleasure and pain will allow us to 
control them to a certain degree and will assist in machine learning. Unfortunately 
teaching machines to feel pain is not an easy problem to solve [8, 16]. Finally, one 
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can simply deny that the problem exists by questioning either possibility of the 
technological singularity or not accepting that it leads to the Singularity Paradox.  
Perhaps one can believe that a superintelligent machine by its very definition will 
have at least as much common sense as an average human and will consequently 
act accordingly. 

4   Analysis of Solutions 

In this paper we provide an overview of methods which were proposed to either 
directly or indirectly address the problem we have named the Singularity Paradox. 
We have categorized the proposed solutions into five broad categories, namely: 
Prevention of Development, Restricted Deployment, Incorporation into Society, 
Self-Monitoring, and Indirect Solutions. Such grouping makes it easier to both 
understand the proposed methods and to analyze them as a set of complete meas-
ures. We will review each category and analyze it in terms of feasibility of  
accomplishing the proposed actions and more importantly try to evaluate the  
likelihood of the method succeeding if implemented.  

Violent struggle against scientific establishment, outlawing AI research and 
placing restrictions on development and sale of hardware components are all a part 
of an effort to prevent superintelligent machines from ever coming into existence 
and to some extent are associated with the modern Luddite movement. Given the 
current political climate, complex legal system and economic needs of the world’s 
most developed countries it is highly unlikely that laws will be passed to either 
ban computer scientists from researching AI systems or from developing and sell-
ing faster processors. Since for this methodology to work the ban needs to be both 
global and enforceable it will not work as there is no global government to enforce 
such a law or to pass it in the first place. Even if such a law was passed there is 
always a possibility that some rogue scientist somewhere will simply violate the 
restrictions making it at best a short term solution.  

An idea for an automated monitoring system AKA “Big Brother AI” is as likely 
to be accepted by humanity as the legal solution analyzed above. It also presents 
the additional challenge of technological implementation which as far as we can 
tell would be as hard to make “humanity safe” as a full blown singularity level AI 
system. Provided that the system would have to be given legal rights to control 
people we can quote Martha Moody by saying "Sometimes the cure is worse than 
the disease." Finally, as for the idea of violent struggle, it may come to be, as sug-
gested by Hugo de Garis [21] but we will certainly not advocate such an approach 
or even consider it as a real solution.  

Restricting access of superintelligent machines to the real world is a commonly 
proposed solution to the SP problem. AI-boxes, Leakproofing and restricted ques-
tion-answering-only systems known as Oracle AIs are just some of the proposed 
methods for accomplishing that. While a lot of skepticism has been expressed to-
wards the possibility of long term restriction of a superintelligent mind no one so 
far has proven that it is impossible with mathematical certainty. This approach 
may be similar to putting a dangerous human being in prison. While some have 
escaped from even maximum security facilities, in general, prisons do provide a 
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certain measure of security which while not perfect is still beneficial for improv-
ing overall safety of the society. This approach may provide some short term relief 
especially in the early stages of the development of truly intelligent machines. We 
also feel that this area is one of the most likely to be accepted by the general scien-
tific community as research in the related fields of computer and network security, 
steganography detection, computer viruses, encryption, and cyber-warfare is well 
funded and highly publishable. While without a doubt the restriction methodology 
will be extremely difficult to implement, it might serve as a tool for at least pro-
viding humanity with a little more time to prepare a better response.   

Numerous suggestions for regulating behavior of machines by incorporating 
them into the human society have been proposed. Economic theories, legal re-
course, human education, ethical principles of morality and equality, and even  
religious indoctrination have been suggested as a way to make superintelligent 
machines a part of our civilization. It seems that the proposed methods are a result 
of an anthropomorphic bias as it is not obvious why would machines with minds 
drastically different from human and which have no legal status, no financial re-
sponsibilities, no moral compass and no spiritual desires be interested in any of the 
typical human endeavors of daily life. We could of course try and program into 
the superintelligent machines such tendencies as meta-rules but then we simply 
change our approach to the so called “Self-Monitoring” methods which we will 
discuss later. While the ideas proposed in this category are straightforward to im-
plement we are skeptical of their usefulness as any even slightly intelligent ma-
chine will discover all the loopholes in our legal, economic and ethical system as 
well or better as human beings are known to be able to. With respect to the idea of 
raising machines as our children and giving them a human education this would 
not only be impractical because of the required time but also because we all know 
about children who greatly disappoint their parents.   

The Self-Monitoring category groups together very dissimilar approaches such 
as explicitly hard-coding rules of behavior into the machine, creating numerous 
levels of machines with increasing capacity to monitor each other or providing 
machines with a fundamental and unmodifiable desire to be nice to humanity. The 
idea of providing explicit rules for robots to follow is the oldest approach sur-
veyed in this paper and as such has received the most criticism over the years. The 
general consensus seems to be that no set of rules can ever capture every possible 
situation and that interaction of rules may lead to unforeseen circumstances and 
undetectable loopholes leading to devastating consequences for humanity.  

The approach of chaining multiple levels of AI systems with progressively 
greater capacity seems to be replacing a very difficult problem of solving SP with 
a much harder problem of solving a multi-system version of the same problem. 
Numerous issues with the chain could arise such as the break in the chain of 
communication or an inability of a system to accurately assess the mind of another 
(especially smarter) system. Also the process of constructing the chain is not  
trivial. 

Finally the approach of making a fundamentally friendly system which will de-
sire to preserve its friendliness under numerous self-improvement measures seems 
to be very likely to work if implemented correctly. Unfortunately no one knows 
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how to create a human-friendly self-improving optimization process and some 
have argued that it is impossible [46, 29, 26]. It is also unlikely that creating a 
friendly intelligent machine is easier than creating any intelligent machine, crea-
tion of which would still produce a Singularity Paradox. Similar criticism could be 
applied to many variations on the Friendly AI theme for example Goertzel’s Hu-
mane AI or Freeman’s Compassionate AI. As one of the more popular solutions to 
the SP problem the Friendliness approach has received a significant dose of criti-
cisms [27, 39, 38], however we believe that this area of research is well suited for 
scientific investigation and further research by the main stream AI community. 
Work has already begun in the general area of assuring the behavior of intelligent 
agents [31, 33]. 

To summarize our analysis of Self-Monitoring methods we can say that explicit 
rules are easy to implement, but are unlikely to serve the intended purpose. The 
chaining approach is too complex to implement or verify and has not been proven 
to be workable in practice. Finally, the approach of installing fundamental desire 
into the superintelligent machines to treat humanity nicely may work if imple-
mented but as of today no one can accurately evaluate feasibility of such an im-
plementation.  Finally, the category of Indirect Approaches is comprised of nine 
highly diverse methods some of which are a bit extreme and others provide no so-
lution at all. For example Peter Turney’s idea of giving machines the ability to feel 
pleasure and pain does not in any way prevent machines from causing humanity 
great amounts of the latter and in fact may help machines in becoming torture ex-
perts given their personal experiences with pain.  

The next approach is based on the idea first presented by Samuel Butler and 
later championed by Alan Turing and others, is that the machines will need us for 
some purpose, such as procreation, and so will treat us nicely. This is highly spe-
culative and it requires us to prove existence of some property of human beings 
for which superintelligent machines will not be able to create a simulator (repro-
duction is definitely not such a property for software agents). This is highly un-
likely and even if there is such a property it does not guarantee nice treatment of 
humanity, since just one of us may be sufficient to perform the duty or  
maybe even a dead human will be as useful in supplying the necessary degree of 
humanness. 

A very extreme view is presented (at least in the role of Devil’s advocate) by 
Hugo de Garis who says that the superintelligent machines are better than us and 
so deserve to take over even if it means the end of the human race. While it is cer-
tainly a valid philosophical position it is neither a solution to the SP nor a desira-
ble outcome in the eyes of the majority of people. Likewise, Butler’s idea of an 
outright war against superintelligent machines is likely to bring humanity to ex-
tinction due to the shear difference in capabilities between the two types of minds. 

Another non-solution is discussed by Jeff Hawkins who simply states that the 
Technological Singularity will not happen and so consequently SP will not be a 
problem. Others admit that the Singularity may take place but think that we may 
get lucky and the machines will be nice to us just by chance. Neither one of those 
positions offers much in terms of solution and the chances of us getting lucky giv-
en the space of all possible non-human minds is very close to zero.  
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Finally, a number of hybrid approaches are suggested which say that instead of 
trying to control or defeat the superintelligent machines we should join them. Ei-
ther via brain implants or via uploads we could become just as smart and powerful 
as machines, defeating the SP problem by supplying our common sense to the ma-
chines. In our opinion the presented solutions are both feasible (in particular the 
cyborgs option) to implement and is likely to work, unfortunately we may have a 
Pyrrhic victory. In the process of defending humanity we might lose ours. Last but 
not least, we have to keep in mind a possibility that the SP simply has no solution 
and prepare to face the unpredictable post-Singularity world.  

5   Conclusions 

With the survival of humanity on the line, the issues raised by the problem of the 
Singularity Paradox are too important to put “all our eggs in one basket”. We 
should not limit our response to any one technique, or an idea from any one scien-
tist or a group of scientists. A large research effort from the scientific community 
is needed to solve this issue of global importance [67]. Even if there is a relatively 
small chance that a particular method would succeed in preventing an existential 
catastrophe it should be explored as long as it is not likely to create significant ad-
ditional dangers to the human race. After analyzing dozens of solutions from as 
many scientists, we came to the conclusion that the search is just beginning. Per-
haps because the winning strategy has not yet been suggested or maybe additional 
research is needed to accept an existing solution with some degree of confidence.  

For a long time work related to the issues raised in this volume has been infor-
mally made public via online forums, blogs and personal website by a few devoted 
enthusiasts. We believe the time has come for the singularity research to join 
mainstream science. It could be a field in its own right supported by strong inter-
disciplinary underpinnings and attracting top mathematicians, philosophers, engi-
neers, psychologists, computer scientists and academics from other fields.  
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